精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a12
+
y2
b12
=1(a1>b1>0)与双曲线
x2
a22
+
y2
b22
=1(a2>0,b2>0)有公共焦点F1、F2,设P是它们的一个交点
(1)试用b1、b2表示△F1PF2的面积;
(2)当b1+b2=m(m>0)是常数时,求△F1PF2的面积的最大值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)设∠F1PF2=θ,当PF1+PF2=2a1时,SF1PF2=b12
sinθ
1+cosθ
,当PF1-PF2=2a2时,SF1PF2 =
b22sinθ
1-cosθ
,由此能求出SF1PF2=b1b2
(2)当b1+b2=m时,有m=b1+b2≥2
b1b2
,由此能求出面积的最大值是
m2
4
解答: 解:(1)设∠F1PF2=θ,当PF1+PF2=2a1时,
F1F22=PF12+PF22-2PF1•PF2cosθ,
即2PF1•PF2cosθ=(PF1+PF22-2PF1•PF2-4c2=4a12-2PF1•PF2-4c2
∴PF1•PF2=
2b12
1+cosθ

SF1PF2=
1
2
×PF1•PF2sinθ=b12
sinθ
1+cosθ

当PF1-PF2=2a2时,
F1F22=PF12+PF22-2PF1•PF2cosθ,
即2PF1•PF2cosθ=(PF1-PF22+2PF1•PF2-4c2=4a22+2PF1•PF2-4c2
∴PF1•PF2=
2b22
1-cosθ

SF1PF2 =
1
2
×PF1•PF2sinθ=
b22sinθ
1-cosθ

SF1PF22=
b12sinθ
1+cosθ
×
b22sinθ
1-cosθ
=b12b22
SF1PF2=b1b2
(2)当b1+b2=m时,有m=b1+b2≥2
b1b2

即有b1b2
m2
4
,△F1PF的面积SF1PF2
m2
4

即面积的最大值是
m2
4
点评:本题考查三角形面积的表示和面积最大值的求法,解题时要认真审题,注意双曲线和椭圆的简单性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且a1=2,若数列{Sn}也为等差数列,则S2014=(  )
A、1007B、2014
C、4028D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1的中心,求证AP⊥PB1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于集合Ω={θ1,θ2,…,θn}和常数θ0,定义:μ=
cos2(θ1-θ0)+cos2(θ2-θ0)+…+cos2(θn-θ0)
n
为集合Ω相对θ0的“余弦方差”.
(1)若集合Ω={
π
3
π
4
}
,θ0=0,求集合Ω相对θ0的“余弦方差”;
(2)若集合Ω={
π
3
3
,π}
,证明集合Ω相对于任何常数θ0的“余弦方差”是一个常数,并求这个常数;
(3)若集合Ω={
π
4
,α,β}
,α∈[0,π),β∈[π,2π),相对于任何常数θ0的“余弦方差”是一个常数,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=
x+3
2x+3
的对称中心是什么?画出其图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C1的中心在原点,焦点在x轴上,且过点A(
5
3
),双曲线C2中心在原点,焦点在y轴上,且过点B(
10
7
).C1的实轴长等于C2虚轴长,C1的虚轴长等于C2实轴长,求双曲线C1、C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线分别为l1、l2,经过右焦点F垂直于l1的直线分别交l1、l2于A、B两点,已知|
OA
|、|
AB
|、|
OB
|成等差数列,且
BF
FA
反向.
(1)求双曲线的离心率;
(2)若直线AB被双曲线截得的弦长为
8
3
,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l:y=x与圆心在第二象限的⊙C相切于原点,且⊙C的半径为2
2

(1)求⊙C的方程;
(2)试问⊙C上是否存在异于原点的点Q,使得点Q到点F(4,0)的距离为4,若存在,请求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2sinx,2cosx),
b
=(
3
cosx,cosx),函数f(x)=
a
b
+m在区间[0,
π
2
]上的最大值为2.
(Ⅰ)求常数m的值;
(Ⅱ)在△ABC中,角A,B,C所对的边是a,b,c,若f(A)=1,sinB=3sinC,△ABC面积为
3
3
4
,求边长a.

查看答案和解析>>

同步练习册答案