精英家教网 > 高中数学 > 题目详情
双曲线C1的中心在原点,焦点在x轴上,且过点A(
5
3
),双曲线C2中心在原点,焦点在y轴上,且过点B(
10
7
).C1的实轴长等于C2虚轴长,C1的虚轴长等于C2实轴长,求双曲线C1、C2的方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:设C1
x2
a1
-
y2
b1
=1
,C2
y2
a2
-
x2
b2
=1
,由题意设a1=b2=a,a2=b1=b,则
5
a
-
3
b
=1
,且
7
b
-
10
a
=1
,由此能求出双曲线C1和C2的方程.
解答: 解:设C1
x2
a1
-
y2
b1
=1
,C2
y2
a2
-
x2
b2
=1

由题意设a1=b2=a,a2=b1=b,
∵双曲线C1的中心在原点,焦点在x轴上,且过点A(
5
3
),
5
a
-
3
b
=1
,①
∵双曲线C2中心在原点,焦点在y轴上,且过点B(
10
7
),
7
b
-
10
a
=1
,②
由①②解得a=
1
2
,b=
1
3

∴双曲线C1:2x2-3y2=1,双曲线C2:3y2-2x2=1.
点评:本题考查双曲线方程的求法,是中档题,解题时要认真审题,注意双曲线的简单性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,若△ABC的外接圆的半径R=
3
,且
cosC
cosB
=
2a-c
b
,则b的值为(  )
A、
3
B、3
C、2
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

利用三角函数线证明:|sinα|+|cosα|≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某设备的使用年限xi(单位:年)和所支出的维修费用yi(万元)的数据资料算
5
i=1
xi=20,
5
i=1
yi=25,
5
i=1
xi2=90,
5
i=1
xiyi=112.3.
(Ⅰ)求维修费用y对使用年限x的线性回归方程
y
=
b
x+
a

(Ⅱ)判断变量x与y之间是正相关还是负相关,并估计使用年限为20年时,维修费用约是多少?(附:在线性回归方程
y
=
b
x+
a
b
=
n
i=1
xiyi-nxy
n
i=1
xi2-nx2
a
=y-
b
x,其中x,y为样本平均值.)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a12
+
y2
b12
=1(a1>b1>0)与双曲线
x2
a22
+
y2
b22
=1(a2>0,b2>0)有公共焦点F1、F2,设P是它们的一个交点
(1)试用b1、b2表示△F1PF2的面积;
(2)当b1+b2=m(m>0)是常数时,求△F1PF2的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asin(ωx+θ)的部分图象如下图,其中ω>0,|θ|<
π
2
,a是△ABC的角A所对的边.
(1)求f(x)的解析式;
(2)若△ABC中角B所对的边b=1,cosC=f(
C
2
),求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+2,求f(x)在R上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了下一次的航天飞行,现准备从10名预备队员(其中男6人,女4人)中选4人参加“神舟十一号”的航天任务.
(Ⅰ)若男甲和女乙同时被选中,共有多少种选法?
(Ⅱ)若至少两名男航天员参加此次航天任务,问共有几种选法?
(Ⅲ)若选中的四个航天员分配到A、B、C三个实验室去,其中每个实验室至少一个航天员,共有多少种
选派法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B分别为x轴,y轴上的两个动点,且|AB|=3,动点P满足
AP
=
1
2
PB

(1)求点P的轨迹E的方程;
(2)已知点M(1,0),直线y=kx+m(k≠0)与曲线E交于点C、D两个不同的点,以MC,MD为邻边的四边形是菱形,求k的取值范围.

查看答案和解析>>

同步练习册答案