精英家教网 > 高中数学 > 题目详情
4.如图所示,在正三棱柱ABC-A1B1C1中,已知AB=1,D是棱BB1上的点,且BD=1,求:
(1)AD与平面BB1C1C所成角的余弦值.
(2)点B到平面ADC的距离.

分析 (1)取BC的中点O,连接OD,则AO⊥平面BB1C1C,∠ADO为AD与平面BB1C1C所成角;
(2)利用等体积,求点B到平面ADC的距离.

解答 解:(1)取BC的中点O,连接OD,则AO⊥平面BB1C1C,
∴∠ADO为AD与平面BB1C1C所成角,
∵AB=BD=1,
∴AD=$\sqrt{2}$,AO=$\frac{\sqrt{3}}{2}$,
∴sin∠ADO=$\frac{\sqrt{6}}{4}$,
∴cos∠ADO=$\frac{\sqrt{10}}{4}$;
(2)△ACD中,AD=CD=$\sqrt{2}$,AC=1,∴S△ACD=$\frac{1}{2}•1•\sqrt{2-\frac{1}{4}}$=$\frac{\sqrt{7}}{4}$,
设点B到平面ADC的距离为h,则$\frac{1}{3}•\frac{\sqrt{7}}{4}h=\frac{1}{3}•\frac{\sqrt{3}}{4}•1$,
∴h=$\frac{\sqrt{21}}{7}$.

点评 考查点B到平面ADC的距离考查直线和平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设$\overrightarrow{a}$=(cos25°sin25°)$\overrightarrow{b}$=(sin20°,cos20°),若t是实数,且$\overrightarrow{μ}$=$\overrightarrow{a}$+t$\overrightarrow{b}$,求|$\overrightarrow{μ}$|的最小值.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:解答题

某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:选择题

样本的平均数为,样本的平均数为,那么样本的平均数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线

(1)写出曲线的参数方程;

(2)以坐标原点为极点,轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.二面角α-l-β的大小为60°,A∈α,B∈β,且A、B两点在l上的射影分别为A′、B′,其中BB′=1,AA′=2,A′B′=3,点C是l上任一点,则AC+BC的最小值为(  )
A.4$\sqrt{2}$B.3$\sqrt{3}$C.2$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,直三棱柱ABC一A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,现将半径为$\sqrt{2}$的球体放置于蛋巢上,则球体球心与蛋巢底面的距离为(  )
A.$\frac{\sqrt{2}+2}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{2}$C.$\frac{\sqrt{10}+\sqrt{2}}{2}$D.$\frac{\sqrt{10}-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1的交点,已知AA1=AB=1,∠BAD=60°.
(1)求证:平面A1BC1⊥平面B1BDD1
(2)求点O到平面BC1D的距离.

查看答案和解析>>

同步练习册答案