分析 要分别考虑二次项系数为0和不为0两种情况,当二次项系数为0时,只要验证是否对一切x∈R成立即可;当二次项系数不为0时,主要用二次函数开口方向和判别式求出m的取值范围,最后两种情况下求并集即可.
解答 解:若m2-2m-3=0,则m=-1或m=3,
若m=-1,不等式(m2-2m-3)x2-(m-3)x-1<0为4x-1<o不合题意;
若m=3,不等式(m2-2m-3)x2-(m-3)x-1<0为-1<0对一切x∈R恒成立,所以m=3可取,
设f(x)=(m2-2m-3)x2-(m-3)x-1,
当 m2-2m-3<0且△=[-(m-3)]2+4(m2-2m-3)<0,解得:-$\frac{1}{5}$<m<3,
即-$\frac{1}{5}$<m≤3时不等式(m2-2m-3)x2-(m-3)x-1<0对一切x∈R恒成立,
故答案为:$({-\frac{1}{5},3}]$.
点评 本题主要考查二次函数恒成立问题,考虑二次项系数为0的情况容易忽略,所以也是易错题.
科目:高中数学 来源: 题型:选择题
| A. | y=2sin(2x+$\frac{π}{3}$) | B. | y=2sin($\frac{x}{2}$-$\frac{π}{3}$) | C. | y=2sin(2x-$\frac{π}{3}$) | D. | y=2sin(2x+$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 45 | C. | 55 | D. | 39 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com