精英家教网 > 高中数学 > 题目详情
10.设公比q(q>0)的等比数列{an}的前n项和Sn,若S2=3a2+2,S4=3a4+2,求公比q.

分析 由题意可得q和a1的方程组,解方程组可得.

解答 解:由题意可得$\left\{\begin{array}{l}{{S}_{2}={a}_{1}+{a}_{2}=3{a}_{2}+2}\\{{S}_{4}={a}_{1}+{a}_{2}+{a}_{3}+{a}_{4}=3{a}_{4}+2}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{a}_{1}-2{a}_{2}=2}\\{{a}_{1}+{a}_{2}+{a}_{3}-2{a}_{4}=2}\end{array}\right.$,即$\left\{\begin{array}{l}{{a}_{1}-2{a}_{1}q=2}\\{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}-2{a}_{1}{q}^{3}=2}\end{array}\right.$,
解得q=$\frac{3}{2}$或q=-1,由q>0可得q=$\frac{3}{2}$

点评 本题考查等比数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={y|y=x2+1,x∈R},B={y|y=5-x2,x∈R},则A∪B=(  )
A.RB.[1,5]C.(-∞,-1]∪[5,+∞)D.{(-$\sqrt{2}$,3)($\sqrt{2}$,3)}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“x=0”是“(2x-1)x=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\sqrt{3}$sinωx+cosωx,ω∈(-3,0),若f(x)的最小正周期为π,则f(x)的一个单调递减区间是(  )
A.(-$\frac{π}{2}$,0)B.(-$\frac{π}{6}$,$\frac{π}{3}$)C.($\frac{π}{3}$,$\frac{5π}{6}$)D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a1,a2∈(0,1),记M=a1a2,M=a1+a2-1则M与N的大小关系是(  )
A.M>NB.M=NC.M<ND.不确定.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$sin\frac{7π}{12}$的值为(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.-$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.-$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足a1=-1,an=1-$\frac{1}{{{a_{n-1}}}}$(n>1),则a2015=(  )
A.2B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若向量$\overrightarrow{a}$=(2,-x)与$\overrightarrow{b}$=(x,-8)的夹角为钝角,则x的范围为x<0且x≠-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{19}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.$\sqrt{13}$B.$\sqrt{15}$C.$\sqrt{17}$D.$\sqrt{7}$

查看答案和解析>>

同步练习册答案