| A. | (-$\frac{π}{2}$,0) | B. | (-$\frac{π}{6}$,$\frac{π}{3}$) | C. | ($\frac{π}{3}$,$\frac{5π}{6}$) | D. | ($\frac{π}{2}$,π) |
分析 由两角和与差的正弦函数公式化简可得f(x)=2sin(ωx+$\frac{π}{6}$),解得ω,由2kπ-$\frac{π}{2}$<2x-$\frac{π}{6}$<2kπ+$\frac{π}{2}$,k∈Z可解得f(x)的单调递减区间.
解答 解:∵f(x)=$\sqrt{3}$sinωx+cosωx=2sin(ωx+$\frac{π}{6}$),
∴由f(x)的最小正周期T=$\frac{2π}{|ω|}$=π,解得ω=-2,f(x)=-2sin(2x-$\frac{π}{6}$),
∴由2kπ-$\frac{π}{2}$<2x-$\frac{π}{6}$<2kπ+$\frac{π}{2}$,k∈Z可解得f(x)的单调递减区间可为:(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z
∴当k=0时,可得f(x)的一个单调递减区间是(-$\frac{π}{6}$,$\frac{π}{3}$).
故选:B.
点评 本题主要考查来了两角和与差的正弦函数公式,正弦函数的图象和性质,属于基本知识的考查.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com