精英家教网 > 高中数学 > 题目详情
6.设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P,若△F1PF2为等腰直角三角形,则椭圆的离心率是$\sqrt{2}-1$.

分析 设椭圆的方程和点P的坐标,把点P的坐标代入椭圆的方程,求出点P的纵坐标的绝对值,Rt△PF1F2 中,利用边角关系,建立a、c 之间的关系,从而求出椭圆的离心率.

解答 解:设椭圆的方程为 $\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),设点P(c,h),则 $\frac{{c}^{2}}{{a}^{2}}$$+\frac{{h}^{2}}{{b}^{2}}$=1,
h2=b2-$\frac{{b}^{2}{c}^{2}}{{a}^{2}}$=$\frac{{b}^{4}}{{a}^{2}}$,∴|h|=$\frac{{b}^{2}}{a}$,由题意得∠F1PF2=90°,∠PF1F2=45°,
Rt△PF1F2 中,tan45°=1=$\frac{P{F}_{2}}{{F}_{1}{F}_{2}}$=$\frac{P{F}_{2}}{2c}$=$\frac{|h|}{2c}$=$\frac{{b}^{2}}{2ac}$=$\frac{{a}^{2}-{c}^{2}}{2ac}$,
∴a2-c2=2ac,$(\frac{c}{a})^{2}+2×\frac{c}{a}-1=0$,∴$\frac{c}{a}$=$\sqrt{2}$-1.
故答案为:$\sqrt{2}-1$

点评 本题考查椭圆的简单性质,直角三角形中的边角关系的应用.考查计算能力.属于中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数图象y=f(x)的图象与y=2x-a的图象关于y=-x对称,且f(-2)+f(-4)=1,则a=(  )
A.-1B.1C.-2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知z=i-1是方程z2+az+b=0的一个根.(i为虚数单位).
(1)求实数a,b的值;
(2)结合韦达定理,猜测方程的另一个根,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A、B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“x=0”是“(2x-1)x=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根;如果¬p∨Q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\sqrt{3}$sinωx+cosωx,ω∈(-3,0),若f(x)的最小正周期为π,则f(x)的一个单调递减区间是(  )
A.(-$\frac{π}{2}$,0)B.(-$\frac{π}{6}$,$\frac{π}{3}$)C.($\frac{π}{3}$,$\frac{5π}{6}$)D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$sin\frac{7π}{12}$的值为(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.-$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.-$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四个结论:
①命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”;
②若命题“¬p”与命题“p或q”都是真命题,则命题q一定是真命题;
③命题“?x∈R+,x-lnx>0”的否定是“?x0∈R+,x0-lnx0≤0”;
④“x>1”是“x2+x-2>0”的必要不充分条件;
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案