精英家教网 > 高中数学 > 题目详情
1.“x=0”是“(2x-1)x=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义即可得到结论.

解答 解:由(2x-1)x=0,解得x=0或x=$\frac{1}{2}$,
则“x=0”是“(2x-1)x=0”的充分不必要条件,
故选:A.

点评 本题主要考查充分条件和必要条件的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.分别在区间[0,1]、[1,e]上任取a,b,则随机事件a≥lnb的概率为1-$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=2sin$\frac{x}{2}$的定义域为[a,b],值域为[-1,2],则b-a的值不可能是(  )
A.$\frac{4π}{3}$B.C.$\frac{8π}{3}$D.$\frac{14π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对任意实数a,b定义运算“?”:a?b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,设f(x)=(x2-1)?(4+x),若函数y=f(x)+k恰有三个零点,则实数k的取值范围是-2≤k<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线C:$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{3}$=1的左、右顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-4,-2],那么直线PA1斜率的取值范围是(  )
A.[-1,-$\frac{3}{10}$]B.[$\frac{3}{8}$,$\frac{3}{4}$]C.[-$\frac{3}{10}$,-$\frac{3}{20}$]D.[$\frac{3}{20}$,$\frac{3}{10}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P,若△F1PF2为等腰直角三角形,则椭圆的离心率是$\sqrt{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的弦AB过以P(-8,-10)为中点,
(1)求直线AB的方程.
(2)若O为坐标原点,求三角形OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设公比q(q>0)的等比数列{an}的前n项和Sn,若S2=3a2+2,S4=3a4+2,求公比q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,用A、B、C、D表示四类不同的元件连接成系统M.当元件A、B至少有一个正常工作且元件C、D至少有一个正常工作时,系统M正常工作.已知元件A、B、C、D正常工作的概率依次为:0.3、0.6、0.5、0.8,元件连接成的系统M正常工作的概率P(M)=0.648.

查看答案和解析>>

同步练习册答案