精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2-3x+4+2lnx(a>0).
(Ⅰ) 当数学公式时,求函数f(x)在数学公式上的最大值;
(Ⅱ) 若f(x)在其定义域上是增函数,求实数a的取值范围.

解:(Ⅰ)当时,

即f(x)在区间和(2,3]上单调递增;在区间[1,2]上单调递减.

所以函数f(x)在上的最大值为
(Ⅱ)
因为f(x)在其定义域上是单调递增函数,
所以当x∈(0,+∞)时f'(x)≥0恒成立,
得2ax2-3x+2≥0恒成立,
因为a>0,x=>0,
所以△=9-16a≤0,
所以实数a的取值范围为
分析:(I)将a的值代入f(x),求出导函数,求出函数的单调区间,得到函数的极值点,求出极大值及端点值f(3),选出最大值.
(II)先求出定义域,令导函数大于等于0在(0,+∞)上恒成立,由于对称轴在区间内,令判别式小于等于0,求出a的范围.
点评:求函数的最值时,一般通过导数求出函数的极值,再求出端点值,选出最值;解决函数的单调性已知求参数范围的题目,一般令导函数大于等于0或小于等于0在单调区间上恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案