精英家教网 > 高中数学 > 题目详情
14.将函数f(x)=sin(2x+$\frac{π}{6}$)图象上所有点向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则y=g(x)的图象的一条对称轴是直线(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=-$\frac{π}{6}$D.x=$\frac{2π}{3}$

分析 由条件利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,得出结论.

解答 解:将函数f(x)=sin(2x+$\frac{π}{6}$)图象上所有点向右平移$\frac{π}{6}$个单位得到函数y=g(x)=sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]
=sin(2x-$\frac{π}{6}$)的图象,
令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
则y=g(x)的图象的一条对称轴是直线x=-$\frac{π}{6}$,
故选:C.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到图3所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,
(Ⅰ)根据以上资料完成下面的2×2列联表,若据此数据算得K2=3.7781,则在犯错的概率不超过5%的前提下,你是否认为“满意与否”与“性别”有关?
不满意满意合计
47
合计
附:
P(K2≥k)0.1000.0500.010
k2.7063.8416.635
(Ⅱ) 估计用户对该公司的产品“满意”的概率;
(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a>b>0,则a2+$\frac{1}{4b(a-b)}$的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.sin15°sin75°=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在直角坐标系中,定义两点A(x1,y1),B(x2,y2)之间的“直角距离”为d(A,B)=|x1-x2|+|y1-y2|.
现有以下命题:
①若A,B是x轴上两点,则d(A,B)=|x1-x2|;
②已知点A(1,2),点B在线段x+y=1(x∈[0,1])上,则d(A,B)为定值;
③已知点A(2,1),点B在椭圆$\frac{{x}^{2}}{3}$+y2=1上,则d(A,B)的取值范围是(1,5);
④若|AB|表示A,B两点间的距离,那么|AB|≥$\frac{\sqrt{2}}{2}$d(A,B).
其中真命题的是①②③④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2cos2x+sin(2x-$\frac{π}{6}$)-1.(x∈R).
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数f(x)的图象经过点(A,$\frac{1}{2}$),若b+c=2a,$\overrightarrow{AB}$•$\overrightarrow{AC}$=6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在四棱锥S-ABCD中,找出并表示所有的异面直线和二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$z=\frac{2-i}{i^3}$(其中i是虚数单位,满足i2=-1),则z的共轭复数是(  )
A.1-2iB.1+2iC.-1-2iD.-1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某单位有员工60名,其中有男员工45名,女员工15名,按照分层抽样的方法抽取4人去参加专业技术培训.
(Ⅰ)求某员工被抽到的概率及参加培训的男、女员工的人数;
(Ⅱ)经过一个星期的学习、培训,公司决定从参加培训的4名员工中选出2名员工做经验交流,方法是先从4名员工里选出1名来做经验交流,该员工做完后,再从剩下的员工中选1名做交流,求选出的2名员工中恰有1名女员工的概率.

查看答案和解析>>

同步练习册答案