精英家教网 > 高中数学 > 题目详情
8.2016年皖智教育联盟第一次联考后,为分析数学考试成绩随机抽取20名同学的成绩统计如下:
分数段(分)[50,70)[70,90)[90,110)[110,130)[130,150]总计
频数2583220           
频率0.100.250.400.150.101
(Ⅰ)完成上述表格,并根据上述数据估算这20名职工的平均成绩;
(Ⅱ)若从这20名同学中任选3人,求至少有1人的成绩在90分以上(含90分)的概率;
(Ⅲ)以频率估计概率,若在全部参考同学(假设样本容量为无穷大)中作出这样的测试,且随机抽取3人,记分数在110分以上(含110分)的人数为X,求X的分布列和数学期望.

分析 (Ⅰ)根据题意,计算频率与频数,填写表格即可,根据上述数据求出这20名职工的平均成绩;
(Ⅱ)用对立事件的概率求出至少有1人的成绩在90分以上(含90分)的概率;
(Ⅲ)以题意,X~B(3,$\frac{1}{4}$),计算对应的概率,写出分布列与数学期望值.

解答 解:(Ⅰ)根据题意,填写表格如下:

分数段(分)[50,70)[70,90)[90,110)[110,130)[130,150]总计
频数2583220           
频率0.100.250.400.150.101
根据上述数据计算这20名职工的平均成绩为
60×0.10+80×0.25+100×0.40+120×0.15+130×0.10=98;
(Ⅱ)若从这20名同学中任选3人,至少有1人的成绩在90分以上(含90分)的概率为
P=1-$\frac{{C}_{7}^{3}}{{C}_{20}^{3}}$=$\frac{221}{228}$;
(Ⅲ)以题意,X~B(3,$\frac{1}{4}$),
所以P(X=0)=${(\frac{3}{4})}^{3}$=$\frac{27}{64}$,
P(X=1)=${C}_{3}^{1}$•$\frac{1}{4}$•${(\frac{3}{4})}^{2}$=$\frac{27}{64}$,
P(X=2)=${C}_{3}^{2}$•${(\frac{1}{4})}^{2}$•$\frac{3}{4}$=$\frac{9}{64}$,
P(X=3)=${(\frac{1}{4})}^{3}$=$\frac{1}{64}$;
所以X的分布列如下:
X0123
P$\frac{27}{64}$$\frac{27}{64}$$\frac{9}{64}$$\frac{1}{64}$
X的数学期望是EX=3×$\frac{1}{4}$=$\frac{3}{4}$.

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示,在△ABC中,I为△ABC的内心,AI交BC于D,交△ABC外接圆于E
求证:
(1)IE=EC
(2)IE2=ED•EA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$f(x)=\sqrt{x(9-x)}$的定义域是{x|0≤x≤9}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知Sn是公比为q的等比数列{an}的前n项和.若3S1,2S2,S3成等差数列,则q=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(m,4),且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的射影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x,y∈N*,x+y=10,xy>20的概率是(  )
A.$\frac{1}{3}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:“?x∈R,x2-2x+2>0”,则¬p是(  )
A.?x∈R,x2-2x+2≤0B.?x0∈R,$x_0^2-2{x_0}+2>0$
C.?x0∈R,$x_0^2-2{x_0}+2<0$D.?x0∈R,$x_0^2-2{x_0}+2≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的实轴长为4$\sqrt{3}$,焦点到渐近线的距离为$\sqrt{3}$.
(1)求此双曲线的方程;
(2)已知直线y=$\frac{{\sqrt{3}}}{3}$x-2与双曲线的右支交于A,B两点,且在双曲线的右支上存在点C,使得$\overrightarrow{OM}$+$\overrightarrow{OB}$=m$\overrightarrow{OC}$,求m的值及点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知过T(3,-2)的直线l与抛物线y2=4x交于P,Q两点,点A(1,2)
(1)若直线l的斜率为1,求弦PQ的长
(2)证明直线AP与直线AQ的斜率乘积恒为定值,并求出该定值.

查看答案和解析>>

同步练习册答案