精英家教网 > 高中数学 > 题目详情
11.已知F1,F2为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,若$P(1,\frac{3}{2})$在椭圆上,且满足|PF1|+|PF2|=4,则椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

分析 运用椭圆的定义,可得a=2,再由点P满足椭圆方程,解得b,进而得到椭圆的方程.

解答 解:由椭圆的定义可得|PF1|+|PF2|=2a=4,
可得a=2,
将$P(1,\frac{3}{2})$代入椭圆方程,可得
$\frac{1}{{a}^{2}}$+$\frac{9}{4{b}^{2}}$=1,解得b=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
故答案为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

点评 本题考查椭圆的方程的求法,注意运用椭圆的定义和点满足椭圆方程,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在区间(0,8)上插入9个等分点,则所分的小区间长度为$\frac{4}{5}$;第5个小区间是[$\frac{16}{5}$,$\frac{20}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少种不同的种法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=sin2x+$\sqrt{3}$cos2x在区间[0,π]上的零点之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(题类A)以椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)短轴端点A(0,1)为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过点A(-2,4)引倾斜角为135°的直线,交曲线$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数,p>0)于P1,P2两点,若|AP1|,|P1P2|,|AP2|成等比数列,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,已知cos(B-C)=1-cosA,且b,a,c成等比数列,求:
(1)sinB•sinC的值;
(2)A;
(3)tanB+tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别是棱AB和BC上的动点,且AE=BF.
(1)求证:A1F⊥C1E;
(2)当AE=BF=$\frac{2}{3}$a时,求三棱锥A1-EFC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为①④.

查看答案和解析>>

同步练习册答案