精英家教网 > 高中数学 > 题目详情
4.求函数f(x)=sin2x+$\sqrt{3}$cos2x在区间[0,π]上的零点之和.

分析 令f(x)=0,利用正切函数的性质求出函数的零点,即可得到结论.

解答 解:由f(x)=sin2x+$\sqrt{3}$cos2x=0,得sin2x=-$\sqrt{3}$cos2x,
即tan2x=-$\sqrt{3}$,
解得2x=kπ-$\frac{π}{3}$,
即x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z;
∵0≤x≤π,
∴当k=1时,x=$\frac{π}{3}$,
当k=2时,x=$\frac{5π}{6}$,
∴函数f(x)在区间[0,π]上的零点之和为$\frac{π}{3}$+$\frac{5π}{6}$=$\frac{7π}{6}$.

点评 本题主要考查了函数零点的应用问题,根据正切函数的性质求出x的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设过点M(-3,-3)的直线l与圆x2+y2+4y-21=0相交于A、B两点.
(1)若|AB|=4$\sqrt{5}$,求直线l的方程;
(2)若线段AB被点M平分,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等腰三角形ABC中,∠A=150°,AB=AC=1,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.据市场调查结果,预测某种家用商品从2014年初开始,n个月内累计的需求量Sn(万件)近似地满足Sn=2ln2-n3(n=1,2,…,12),按此预测在本年度内,需求量最大的月份是(  )
A.5月、6月B.6月、7月C.7月、8月D.8月、9月

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.将下列函数的最小正周期T填在空格内:
(1)y=2cos(2x+$\frac{π}{3}$),T=π
(2)y=sinx+$\sqrt{3}$cosx,T=2π
(3)y=cos2$\frac{π}{2}$x+1,T=2
(4)y=sin4x-cos4x,T=π
(5)y=sin2x+2sinxcosx,T=π
(6)y=sin4x+cos4x,T=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,椭圆$W:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左顶点A在圆O:x2+y2=16上.
(Ⅰ)求椭圆W的方程;
(Ⅱ)直线AP与椭圆W的另一个交点为P,与圆O的另一个交点为Q.
(i)当$|AP|=\frac{{8\sqrt{2}}}{5}$时,求直线AP的斜率;
(ii)是否存在直线AP,使得$\frac{|PQ|}{|AP|}=3$?若存在,求出直线AP的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1,F2为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,若$P(1,\frac{3}{2})$在椭圆上,且满足|PF1|+|PF2|=4,则椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,O是正方形AA1B1B的中心,AB=2$\sqrt{2}$,C1O⊥平面AA1B1B,且C1O=2.
(1)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段AM的长;
(2)求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是2.

查看答案和解析>>

同步练习册答案