精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{l{n}^{2}x+alnx+b,x>0}\\{{e}^{x}+\frac{1}{4},x≤0}\end{array}\right.$,且f(e)=f(1),f(e2)=f(0)+$\frac{11}{4}$,则不等式f(lnx)≥1的解集是(  )
A.{x|x$≥\frac{7}{4}$}B.{x|$\frac{3}{4}$≤x≤1}C.{x|$\frac{3}{4}$≤x≤$\frac{7}{4}$}D.{x|x≥$\frac{3}{4}$}

分析 由题意,$\left\{\begin{array}{l}{1+a+b=b}\\{4+2a+b=4}\end{array}\right.$,可得a=-1,b=2,再分类讨论,即可求出不等式f(lnx)≥1的解集.

解答 解:由题意,$\left\{\begin{array}{l}{1+a+b=b}\\{4+2a+b=4}\end{array}\right.$,∴a=-1,b=2,
lnx≤0,则x+$\frac{1}{4}$≥1,∴x≥$\frac{3}{4}$,∴$\frac{3}{4}$≤x≤1;
lnx>0,f(lnx)=(lnlnx-$\frac{1}{2}$)2+$\frac{7}{4}$>1恒成立,∴x>1,
综上,x≥$\frac{3}{4}$.
故选:D.

点评 本题考查分段函数,考查求不等式f(lnx)≥1的解集,求出a,b是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)写出|x|<10的一个充分不必要条件.
(2)写出x>-2的一个必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设命题p:实数x满足|x-1|≤m,其中m>0,命题q:-2<x≤10.
(1)若m=2且p∨q为真命题,求实数x的取值范围;
(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a∈R,f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$(x∈R)是奇函数.
(1)求实数a的值;
(2)解不等式5f(x-x2)+3<0;
(3)已知sin(x+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx.若关于x的函数f(x)=f(sinx+cosx)+f(b-sinxcosx)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在银行中存款10000元,假定年利率为3.00%,到期后连本带息继续存入银行,请用直到型和当型两种语句设计程序,计算经过多少年才会连本带利翻一番.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式2x2-a$\sqrt{{x}^{2}+1}$+4>0对于任意x∈R恒成立,则a的取值范围是(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={y|y=x${\;}^{\frac{1}{3}}$,-1≤x≤1},B={y|y=2-$\frac{1}{x}$,0<x≤1},则集合A∪B=(  )
A.(-∞,1]B.[-1,1]C.D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(  )
A.24B.24$\sqrt{2}$C.40D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(Ⅰ)已知两点P1(4,9),P2(6,3),求以P1P2为直径的圆的方程;
(Ⅱ)求过两个点A(2,-3)和B(-2,-5),且圆心在直线l:x-2y-3=0上的圆的方程.

查看答案和解析>>

同步练习册答案