精英家教网 > 高中数学 > 题目详情
20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=b,且双曲线的焦距为2$\sqrt{5}$,则该双曲线方程为(  )
A.$\frac{{x}^{2}}{4}-{y}^{2}$=1B.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{2}$=1C.x2-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{3}$=1

分析 由题意可得c=$\sqrt{5}$,即a2+b2=5,运用双曲线的定义,可得b=2a,解方程可得a,b,进而得到双曲线的方程.

解答 解:由双曲线的焦距为2$\sqrt{5}$,
即有2c=2$\sqrt{5}$,可得c=$\sqrt{5}$,即a2+b2=5,
由|PF1|-|PF2|=b,及双曲线定义可得|PF1|-|PF2|=2a,
即为2a=b,
即4a2=b2
解得a=1,b=2,
则双曲线的方程为x2-$\frac{{y}^{2}}{4}$=1.
故选:C.

点评 本题考查双曲线的方程的求法,注意运用双曲线的定义和焦距、基本量的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$.
(Ⅰ)若$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,求$|{\overrightarrow a+2\overrightarrow b}|$;
(Ⅱ)若$(2\overrightarrow a-\overrightarrow b)•(3\overrightarrow a+\overrightarrow b)=3$,求$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在五面体ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠ACF=60°,AD⊥CD,平面CDEF⊥平面ABCD,P是BC的中点,
(1)求异面直线BE与PF所成角的余弦值;
(2)在直线EF上,是否存在一点Q,使得PQ∥平面EBD,若存在,求出该点;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{y^2}{4}+\frac{x^2}{3}=1$与抛物线y=ax2(a>0)有相同的焦点,则抛物线的焦点到准线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-x.
(1)证明:对任意的x1,x2∈(0,+∞),都有|f(x1)|>$\frac{ln{x}_{2}}{{x}_{2}}$;
(2)设m>n>0,比较$\frac{f(m)+m-(f(n)+n)}{m-n}$与$\frac{m}{{m}^{2}-{n}^{2}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=2cos(ωx+φ)+m(ω>0)对任意实数t都有f(t+$\frac{π}{4}$)=f(-t),且f($\frac{π}{8}$)=-1,则实数m的值等于(  )
A.-3或1B.-1或3C.±3D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>3,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从1,2,3,4这4个数中,任取两个数,两个数都是奇数的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-2xf′(1)+1,则f′(0)的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

同步练习册答案