【题目】如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.
【答案】解:解法一:因为ABCD﹣A′B′C′D′为长方体,故AB∥C′D′,AB=C′D′,
故ABC′D′为平行四边形,故BC′∥AD′,显然BC′不在平面D′AC内,
于是直线BC′平行于平面D′AC.
直线BC′到平面D′AC的距离即为点B到平面D′AC的距离,设为h,
考虑三棱锥D′﹣ABC的体积,以ABC为底面,可得三棱锥D′﹣ABC的体积为V= ( )= ,
而△AD′C中,AC=D′C= ,AD′= ,故△CAD′的底边AD′上的高为 ,
故△CAD′的面积S△CAD′= = ,
所以,V= = h= ,即直线BC′到平面D′AC的距离为 .
解法二:以D′A′所在的直线为x轴,以D′C′所在的直线为y轴,以D′D所在的直线为z轴,
建立空间直角坐标系.
则由题意可得,点A(1,0,1 )、B(1,2,1)、C(0,2,1)、C′(0,2,0)、D′(0,0,0).
设平面D′AC的一个法向量为 =(u,v,w),则由 ⊥ , ⊥ ,可得 , .
∵ =(1,0,1), =(0,2,1),∴ ,解得 .
令v=1,可得 u=2,w=﹣2,可得 =(2,1,﹣2).
由于 =(﹣1,0,﹣1),∴ =﹣0,故有 ⊥ .
再由BC′不在平面D′AC内,可得直线BC′平行于平面D′AC.
由于 =(1,0,0),可得点B到平面D′AC的距离d= = = ,
故直线BC′到平面D′AC的距离为 .
【解析】解法一:证明ABC′D′为平行四边形,可得BC′∥AD′,再利用直线和平面平行的判定定理证得直线BC′平行于平面D′AC. 所求的距离即点B到平面D′AC的距离,设为h,再利用等体积法求得h的值.
解法二:建立空间直角坐标系,求出平面D′AC的一个法向量为 =(2,1,﹣2),再根据 =﹣0,可得 ⊥ ,可得直线BC′平行于平面D′AC.求出点B到平面D′AC的距离d= 的值,即为直线BC′到平面D′AC的距离.
【考点精析】关于本题考查的直线与平面平行的判定,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为 ,求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:)随时间(,单位:小时)的大致变化曲线,若该曲线近似的满足函数关系.
(1)求函数的表达式;
(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆,点B是其下顶点,过点B的直线交椭圆C于另一点A(A点在轴下方),且线段AB的中点E在直线上.
(1)求直线AB的方程;
(2)若点P为椭圆C上异于A、B的动点,且直线AP,BP分别交直线于点M、N,证明:OM·ON为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:
①数列是等比数列;
②数列是递增数列;
③存在最小的正数,使得对任意的正整数 ,都有 ;
④存在最大的正数,使得对任意的正整数,都有.
其中真命题的序号是________________(请写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】环保组织随机抽检市内某河流2015年内100天的水质,检测单位体积河水中重金属含量,并根据抽检数据绘制了如下图所示的频率分布直方图.
(Ⅰ)求图中的值;
(Ⅱ)假设某企业每天由重金属污染造成的经济损失(单位:元)与单位体积河水中重金属含量
的关系式为,若将频率视为概率,在本年内随机抽取一天,试估计这天经济损失不超过500元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1 , B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且 ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线.
(1)若直线不经过第四象限,求的取值范围;
(2)若直线交轴负半轴于点,交轴正半轴于点,为坐标原点,设的面积为,求的最小值及此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com