精英家教网 > 高中数学 > 题目详情
1.已知命题p:“?x>0,有2x≥1成立”,则¬p为?x>0,有2x<1.

分析 直接利用全称命题的否定是特称命题,写出结果即可.

解答 解:全称命题的否定是特称命题,命题p:“?x>0,有2x≥1成立”,则¬p为?x>0,有2x<1成立.
故答案为:?x>0,有2x<1.

点评 本题考查全称命题与特称命题的否定,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列五种说法正确的个数有(  )
①若A,B,C为三个集合,满足A∪B=B∩C,则一定有A⊆C;
②函数的图象与垂直于x轴的直线的交点有且仅有一个;
③若A⊆U,B⊆U,则A=(A∩B)∪(A∩∁UB);
④若函数f(x)在[a,b]和[b,c]都为增函数,则f(x)在[a,c]为增函数.
A.1个B.2个C.3 个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,输出的结果是(  )
A.34B.55C.78D.89

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是定义在R上的奇函数恒满足,且对任意实数x恒满足f(x+2)=-f(x) 当x∈[0,2]时,f(x)=2x-x2
(1)求证:函数f(x)是周期函数;
(2)当x∈[2,4],求f(x)的解析式;
(3)计算${∫}_{0}^{4}$f(x)dx 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-bx+c,若f(-1)=f(3)且f(0)=3.
(1)求b、c的值;
(2)若函数g(x)是定义在R上的奇函数,且满足当x>0时,g(x)=f(x),试求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,△ABC中,D为AC的中点,AB=2,BC=$\sqrt{7}$,∠A=$\frac{π}{3}$.
(1)求cos∠ABC的值;
(2)求BD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={-1,2},B={x|mx=1},且A∪B=A,则m的值为0或-1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.经过点M(2$\sqrt{6}$,-2$\sqrt{6}$)且与双曲线$\frac{y^2}{4}-\frac{x^2}{3}=1$有共同渐近线的双曲线方程为(  )
A.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则实数a为(  )
A.-1B.0C.1D.-2

查看答案和解析>>

同步练习册答案