精英家教网 > 高中数学 > 题目详情
9.已知f(x)是定义在R上的奇函数恒满足,且对任意实数x恒满足f(x+2)=-f(x) 当x∈[0,2]时,f(x)=2x-x2
(1)求证:函数f(x)是周期函数;
(2)当x∈[2,4],求f(x)的解析式;
(3)计算${∫}_{0}^{4}$f(x)dx 的值.

分析 (1)根据函数周期的定义进行证明即可.
(2)由f(x)最小正周期为4,知当x∈[2,4]时,有f(-x)=f(-x+4),根据奇函数的性质推知f(x)=-f(-x),由此得到f(x)的解析式;
(3)利用定积分的计算公式解答.

解答 (1)证明:∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),
即函数f(x)是周期为4的周期函数.
(2)解:x∈[2,4],则-x∈[-2,-4],-x+4∈[0,2],
∵函数f(x)是周期为4的周期函数,
∴f(-x)=f(-x+4)=2(4-x)-(4-x)2
又因为f(x)是奇函数,所以f(x)=-f(-x)=x2-6x+8.
(3)解:${∫}_{0}^{4}$f(x)dx
=${∫}_{0}^{2}$(2x-x2)dx+${∫}_{2}^{4}$(x2-6x+8)dx
=($-\frac{1}{3}$x3+x2)|$\left.\begin{array}{l}{2}\\{0}\end{array}\right.$+($\frac{1}{3}$x3-3x2+8x)|$\left.\begin{array}{l}{4}\\{2}\end{array}\right.$
=$-\frac{1}{3}$×23+22+$\frac{1}{3}$×43-3×42+8×4-$\frac{1}{3}$×23+3×22-8×2
=0.

点评 本题考查函数的周期性质的应用,是基础题,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.点(1,1)到直线x+y-1=0的距离为(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={1,3,2m+3},集合B={3,m2},若A∩B=B,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2sin(3x-$\frac{π}{3}$),x∈R.
(1)求f(x)的最小正周期,单调减区间;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个正四棱台,其上、下底面均为正方形,边长分别为2cm和4cm,侧棱长为2cm,则其表面积为$12\sqrt{3}+20$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域是[-3,3],它们在x∈[0,3]上的图象如图所示,则不等式f(x)•g(x)≥0的解集是[-3,-$\frac{3}{2}$]∪[0,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知命题p:“?x>0,有2x≥1成立”,则¬p为?x>0,有2x<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)={\{\;}_{{log}_{3}({x}^{2}-1),x≥2.}^{{2}^{x-1},x<2,}$,则f(f(2))的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=sin(x+\frac{π}{2})$,$g(x)=cos(x-\frac{π}{2})$,则下列结论中正确的是(  )
A.函数y=f(x)•g(x)的最小正周期为2π
B.函数y=f(x)•g(x)的最大值为1
C.$x=\frac{π}{2}$是函数y=f(x)•g(x)的图象的一条对称轴
D.函数y=f(x)•g(x)在区间$[-\frac{π}{4},\frac{π}{4}]$是单调增函数

查看答案和解析>>

同步练习册答案