精英家教网 > 高中数学 > 题目详情
19.点(1,1)到直线x+y-1=0的距离为(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

分析 直接利用点到直线的距离公式求解即可.

解答 解:由点到直线的距离公式d=$\frac{|1+1-1|}{\sqrt{{1}^{2}+{1}^{2}}}$=$\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查点到直线的距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知如图是某NBA球员连续10场常规赛得分的茎叶图,则该球员这10场比赛的场均得分为(  )
A.17.3B.17.5C.18.2D.18.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x+1)的定义域是[-2,3],则y=f(x2)的定义域是(  )
A.[-1,4]B.[0,16]C.[-2,2]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等比数列{an}中,若a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=$\frac{1}{2}$ .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a$,$\overrightarrow b$满足<${\overrightarrow a$,$\overrightarrow b}\right.$>=$\frac{π}{6}$,|${\overrightarrow a}$|=1,|2$\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{13}$,则|${\overrightarrow b}$|=$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)已知曲线C的参数方程为$\left\{\begin{array}{l}x=4+5cost\\ y=3+5sint\end{array}\right.$,(t为参数),直线l与C交于M,N两点,求弦长|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列五种说法正确的个数有(  )
①若A,B,C为三个集合,满足A∪B=B∩C,则一定有A⊆C;
②函数的图象与垂直于x轴的直线的交点有且仅有一个;
③若A⊆U,B⊆U,则A=(A∩B)∪(A∩∁UB);
④若函数f(x)在[a,b]和[b,c]都为增函数,则f(x)在[a,c]为增函数.
A.1个B.2个C.3 个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“对任意实数x∈[-1,2],关于x的不等式x2-a≤0恒成立”为真命题的一个充分不必要条件是(  )
A.a≥4B.a>4C.a>3D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是定义在R上的奇函数恒满足,且对任意实数x恒满足f(x+2)=-f(x) 当x∈[0,2]时,f(x)=2x-x2
(1)求证:函数f(x)是周期函数;
(2)当x∈[2,4],求f(x)的解析式;
(3)计算${∫}_{0}^{4}$f(x)dx 的值.

查看答案和解析>>

同步练习册答案