精英家教网 > 高中数学 > 题目详情
3.一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
轿车A轿车B轿车C
舒适型100150z
标准型300450600
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

分析 (1)利用分层抽样满足每个个体被抽到的概率相等,列出方程求出n,再利用频数等于频率乘以样本容量求出n的值,据总的轿车数量求出z的值.
(2)先利用分层抽样满足每个个体被抽到的概率相等,求出抽取一个容量为5的样本舒适型轿车的辆数,利用列举的方法求出至少有1辆舒适型轿车的基本事件,利用古典概型的概率公式求出概率.
(3)利用平均数公式求出数据的平均数,通过列举得到该数与样本平均数之差的绝对值不超过0.5的数据,利用古典概型的概率公式求出概率.

解答 解:(1)设该厂这个月共生产轿车n辆,
由题意得$\frac{50}{n}$=$\frac{10}{100+300}$,∴n=2000,…(2分)
∴z=2000-(100+300)-150-450-600=400.…(3分)
(2)设所抽样本中有a辆舒适型轿车,
由题意,得a=2.
因此抽取的容量为5的样本中,
有2辆舒适型轿车,3辆标准型轿车.…(4分)
用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准轿车,
用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,
则基本事件空间包含的基本事件有:
(A1,A2),(A1B1),(A1B2),(A1,B3,),(A2,B1),(A2,B2)(A2,B3),
(B1B2),(B1,B3,),(B2,B3),共10个,…(6分)
事件E包含的基本事件有:(A1A2),(A1,B1,),(A1,B2),(A1,B3),
(A2,B1),(A2,B2),(A2,B3),共7个,…(8分)
故P(E)=$\frac{7}{10}$,即所求概率为$\frac{7}{10}$.…(9分)
(3)样本平均数$\overline{x}$=$\frac{1}{8}$×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.…(10分)
设D表示事件“从样本中任取一数,该数与样本平均数之差的绝对不超过0.5”,
则基本事件空间中有8个基本事件,…(11分)
事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,…(13分)
∴P(D)=$\frac{6}{8}$=$\frac{3}{4}$,即所求概率为$\frac{3}{4}$.…(14分)

点评 本题考查古典概型,考查用列举法来得到事件数,考查分层抽样,是一个概率与统计的综合题目,这种题目看起来比较麻烦,但是解题的原理并不复杂.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.为了得到函数y=3cos2x,x∈R的图象,只需要把函数y=3cos(2x+$\frac{π}{5}$),x∈R的图象上所有的点(  )
A.向左平移$\frac{π}{5}$个单位长度B.向右平移$\frac{π}{5}$个单位长度
C.向左平移$\frac{π}{10}$个单位长度D.向右平移$\frac{π}{10}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-2mx+3.
(Ⅰ)当m=1时,求函数f(x)在区间[-2,2]上的最大值和最小值;
(Ⅱ)若函数f(x)在区间[1,+∞)上的值恒为正数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}前n项和Sn=$\frac{1}{2}$n(n+1).
(1)求数列{an}的通项公式;
(2)若数列{bn}的通项公式为bn=2n,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC中,a=1,b=$\sqrt{3}$,A=$\frac{π}{6}$,则B=(  )
A.$\frac{π}{3}$B.$\frac{π}{3}$C.$\frac{π}{3}$或$\frac{2}{3}$πD.$\frac{5}{6}$π或$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$\overrightarrow{OM}$=(2,1),$\overrightarrow{ON}$=(0,1),O为坐标原点,动点P(x,y)满足0≤$\overrightarrow{OP}$•$\overrightarrow{OM}$≤1,0≤$\overrightarrow{OP}$•$\overrightarrow{ON}$≤1,则x-y的最小值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是等差数列,a1=2,公差d≠0,且a1,a2,a4成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=${2}^{{a}_{n}}$(n∈N*),求(an+bn)的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a>0,b>0,c>0,且a+b+c=1.
(Ⅰ)若a=b=c,则($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)的值为8;
(Ⅱ)求证:($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中数学 来源:2017届广西陆川县中学高三9月月考数学(文)试卷(解析版) 题型:解答题

如图,三棱柱的侧棱底面是棱的中点,的中点,

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案