精英家教网 > 高中数学 > 题目详情
6.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{{\sqrt{3}}}{2}$,它的一个顶点恰好在抛物线x2=8y的准线上.
(1)求椭圆C的标准方程;
(2)点P(2,$\sqrt{3}$),Q(2,-$\sqrt{3}$)在椭圆上,A,B是椭圆上位于直线PQ两侧的动点.当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.

分析 (1)设椭圆C的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),由椭圆的一个顶点恰好在抛物线x2=8y的准线y=-2上,可得-b=-2,解得b.又$\frac{c}{a}=\frac{\sqrt{3}}{2}$,a2=b2+c2,联立解得即可.
(2)设A(x1,y1),B(x2,y2),由∠APQ=∠BPQ,则PA,PB的斜率互为相互数,可设直线PA的斜率为k,则PB的斜率为-k,直线PA的方程为:$y-\sqrt{3}$=k(x-2),与椭圆的方程联立化为$(1+4{k}^{2}){x}^{2}+8k(\sqrt{3}-2k)x$+4$(\sqrt{3}-2k)^{2}$-16=0,利用根与系数的关系、斜率计算公式即可得出.

解答 解:(1)设椭圆C的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
∵椭圆的一个顶点恰好在抛物线x2=8y的准线y=-2上,
∴-b=-2,解得b=2.
又$\frac{c}{a}=\frac{\sqrt{3}}{2}$,a2=b2+c2
∴a=4,$c=2\sqrt{3}$,
可得椭圆C的标准方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.
(2)设A(x1,y1),B(x2,y2),
∵∠APQ=∠BPQ,则PA,PB的斜率互为相互数,
可设直线PA的斜率为k,则PB的斜率为-k,
直线PA的方程为:$y-\sqrt{3}$=k(x-2),
联立$\left\{\begin{array}{l}{y-\sqrt{3}=k(x-2)}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$,
化为$(1+4{k}^{2}){x}^{2}+8k(\sqrt{3}-2k)x$+4$(\sqrt{3}-2k)^{2}$-16=0,
∴x1+2=$\frac{8k(2k-\sqrt{3})}{1+4{k}^{2}}$,
同理可得:x2+2=$\frac{-8k(-2k-\sqrt{3})}{1+4{k}^{2}}$=$\frac{8k(2k+\sqrt{3})}{1+4{k}^{2}}$,
∴x1+x2=$\frac{16{k}^{2}-4}{1+4{k}^{2}}$,x1-x2=$\frac{-16\sqrt{3}k}{1+4{k}^{2}}$,
kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{k({x}_{1}+{x}_{2})-4k}{{x}_{1}-{x}_{2}}$=$\frac{\sqrt{3}}{6}$.
∴直线AB的斜率为定值$\frac{\sqrt{3}}{6}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、斜率计算公式、直线方程,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.曲线y=x2+$\frac{1}{x}$在点P(1,2)处的切线方程是(  )
A.x-y-1=0B.x+y+1=0C.x-y+1=0D.x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z满足|z|=1,则|z-3-4i|的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x(ex-e-x)-(2x-1)(e2x-1-e1-2x),则满足f(x)>0的实数x的取值范围为($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x.y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,z=|4x-4y+3|,则z的取值范围是(  )
A.[$\frac{5}{3}$,15]B.[$\frac{5}{3}$,15)C.[$\frac{5}{3}$,5)D.(5,15)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式:(x+1)(x-2)2(x+3)3(x-4)4<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式:sinα≥-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知线段AB=6,动点P,Q满足PA=1,QA=2QB,则PQ的取值范围是[0,10].

查看答案和解析>>

同步练习册答案