精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心为原点,以坐标轴为对称轴,且经过(-
1
2
3
),(
2
2
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A(0,1)的直线l交椭圆C于M、N两点,若OM⊥ON,求直线l的方程.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:(Ⅰ)设出椭圆的标准方程,将(-
1
2
3
),(
2
2
2
)代入构造方程组,从而求得椭圆C的标准方程.
(Ⅱ)设过点A(0,1)的直线l与椭圆C交于M(x1,y1),N(x2,y2),把直线代入椭圆的方程,再利用韦达定理求得 x1+x2 和x1•x2.根据OM⊥ON,即
OM
ON
=0,求得k的值.根可得直线l的方程.
解答: 解:(Ⅰ)设椭圆的方程为mx2+ny2=1,(m>0,n>0,m≠n),
∵椭圆C经过(-
1
2
3
),(
2
2
2
)两点,
1
4
m+3n=1
1
2
m+2n=1

解得:
m=1
n=
1
4

∴椭圆C的标准方程为
y2
4
+x
2
=1

(Ⅱ)由题意知,直线l的斜率存在,
设直线l与椭圆C交于M(x1,y1),N(x2,y2)两点,
y2
4
+x
2
=1
y=kx+1
,可得 (k2+4)x2+2kx-3=0,
∴x1+x2=-
2k
k2+4
,x1•x2=-
3
k2+4

∵OM⊥ON,
OM
ON
=0,
即 x1•x2+y1•y2=0,即(1+k2)x1•x2+k(x1+x2)+1=0,
即 (1+k2)(
-3
k2+4
)+k(
-2k
k2+4
)+1=0,化间得-4k2+1=0,解得k=±
1
2

故直线l的方程为:y=±
1
2
x+1,即x-2y+2=0,或x+2y-2=0.
点评:本题主要考查椭圆的标准方程,直线和圆锥曲线的位置关系的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过坐标原点O的直线与双曲线C在第一象限内交于点P,若|PF1|+|PF2|=6a,且△PF1F2为锐角三角形,则直线OP斜率的取值范围是(  )
A、(
2
3
3
4
3
)
B、(
4
3
3
)
C、(1,
2
3
3
)
D、(
2
3
3
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在数列{bn}使得(2b1-n)C
 
1
n
+(2b2-n)C
 
2
n
+(2b3-n)C
 
3
n
+…+(2bn-n)C
 
n
n
=n对一切n∈N*成立?若存在,求数列{bn}的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(3π+α)=lg
1
310
,则tan(π+α)的值是(  )
A、-
2
4
B、
2
4
C、±
2
4
D、
2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x-1)+
2a
x
(其中x>1,a≥0)

(1)求函数f(x)的单调区间;
(2)已知对任意的x∈(1,2)∪(2,+∞),不等式
1
x-2
[f(x)-a]>0
成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx,g(x)=mx-
x3
6
(m为实数).
(Ⅰ)求曲线y=f(x)在点P(
π
4
,f(
π
4
))处的切线方程;
(Ⅱ)求函数g(x)的单调减区间;
(Ⅲ)若m=1,证明:当x>0时,x>f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax+
a+1
x
+3(a∈R).
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a=1时,若关于x的不等f(x)≥m2-5m恒成立,求实数m的取值范围;
(3)当a≥-
1
2
时,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=
5
2
x2(0≤x≤1)
(
1
2
)x+2(x>1)
,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是(  )
A、(-5,-3)∪(-1,0)
B、(-5,-2)∪(-
9
2
9
2
)
C、(-5,-
9
2
)∪(-
9
2
,-2)
D、(-
9
2
,-2)∪(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥S-ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:
①异面直线SB与AC所成的角为90°.
②直线SB⊥平面ABC;
③平面SBC⊥平面SAC;
④点C到平面SAB的距离是
1
2
a.
其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案