精英家教网 > 高中数学 > 题目详情
1.如图,几何体EF-ABCD中,DE⊥平面ABCD,CDEF是正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,△ACB的腰长为$2\sqrt{2}$的等腰直角三角形.
(Ⅰ)求证:BC⊥AF;
(Ⅱ)求几何体EF-ABCD的体积.

分析 (Ⅰ)证明AC⊥BC.DE⊥BC.推出CF⊥BC.即可证明BC⊥平面ACF.然后推出BC⊥AF.
(Ⅱ)利用V几何体EF-ABCD=V几何体A-CDEF+V几何体F-ACB,求解即可.

解答 (Ⅰ)证明:因为△ACB是腰长为$2\sqrt{2}$的等腰直角三角形,所以AC⊥BC.
因为DE⊥平面ABCD,所以DE⊥BC.
又DE∥CF,所以CF⊥BC.
又AC∩CF=C,所以BC⊥平面ACF.
所以BC⊥AF.
(Ⅱ)解:因为△ABC是腰长为$2\sqrt{2}$的等腰直角三角形,
所以$AC=BC=2\sqrt{2},AB=\sqrt{A{C^2}+B{C^2}}=4$,
所以$AD=BCsin∠ABC=2\sqrt{2}×sin45°=2,CD=AB=BCcos∠ABC=4-2\sqrt{2}×cos45°=2$.
所以DE=EF=CF=2,
由勾股定理得$AE=\sqrt{A{D^2}+D{E^2}}=2\sqrt{2}$,
因为DE⊥平面ABCD,所以DE⊥AD.
又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF.
所以V几何体EF-ABCD=V几何体A-CDEF+V几何体F-ACB=$\frac{1}{3}{S_{四边形CDEF}}•AD+\frac{1}{3}{S_{△ABC}}•CF$=$\frac{1}{3}CD•DE•AD+\frac{1}{3}•\frac{1}{2}AC•BC•CF$=$\frac{1}{3}×2×2×2+\frac{1}{3}×\frac{1}{2}×2\sqrt{2}×2\sqrt{2}×2$=$\frac{16}{3}$.

点评 本题考查直线与平面垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且${a_n}=\sqrt{{S_{2n-1}}}$(n∈N*).若不等式$\frac{{λ{{(-1)}^n}}}{a_n}≤\frac{{n+2{{(-1)}^{n+1}}}}{n}$对任意n∈N*恒成立,则实数λ的取值范围是[-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{18}$的值的一个程序框图,其中判断框内应填入的条件是(  )
A.i>9B.i<9C.i>18D.i<18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图的程序框图,则输出的S值为(  )
A.33B.215C.343D.1025

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下:
甲 7  8  10  9  8  8  6
乙 9  10  7  8  7  7  8
则下列判断正确的是(  )
A.甲射击的平均成绩比乙好
B.乙射击的平均成绩比甲好
C.甲射击的成绩的众数小于乙射击的成绩的众数
D.甲射击的成绩的极差大于乙射击的成绩的极差

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列四个命题,
①若“p且q”为假命题,则p,q均为假命题
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”
③“任意x∈R,x2+1≥0”的否定是“存在x∈R,x2+1<0”;
④在△ABC中,“A>B”是“sinA>sinB”的充要条件;
其中不正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={1,t,2t},B={1,t2},若B⊆A,则实数t=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设两条直线的方程分别为x+y+a=0和 x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤$\frac{1}{8}$,则这两条直线间距离的最大值为(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,5),$\overrightarrow{c}$=(m,3),且($\overrightarrow{a}$+$\overrightarrow{c}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),则m=(  )
A.$\frac{{-3+\sqrt{17}}}{2}$B.$\frac{{3-\sqrt{17}}}{2}$C.$\frac{{-3±\sqrt{17}}}{2}$D.$\frac{{3±\sqrt{17}}}{2}$

查看答案和解析>>

同步练习册答案