数列的通项,其前n项和为.
(1)求;
(2)求数列{}的前n项和.
(1);(2)
解析试题分析:(1)化简通项公式为,考虑到的值是周期性出现的,而且周期是3,故将数列三项并为一组为+++……+分别求和,进而求;(2)求,观察其特征选择相应的求和方法,通常求数列前n项和的方法有①裂项相消法,在求和过程中相互抵消的办法;②错位相减法,通项公式是等差数列乘以等比数列的形式;③分组求和法,将数列求和问题转化为等差数列求和或者等比数列求和问题;④奇偶并项求和法,考虑数列相邻两项或者相邻几项的特征,进而求和的方法,该题利用错位相减法求和.
试题解析:(1) 由于,
,∴;
(2)
两式相减得:
考点:1、三角函数的周期性;2、数列求和;3、余弦的二倍角公式.
科目:高中数学 来源: 题型:解答题
正项数列{an}的前n项和Sn满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn< .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com