分析 (2)由(1)得:f(x)+f(1-x)=1,进而可得f($\frac{1}{101}$)+f($\frac{2}{101}$)+…+f($\frac{100}{101}$)=50[f(x)+f(1-x)].
解答 解::∵函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$.
∴1-f(1-x)=1-$\frac{{4}^{1-x}}{{4}^{1-x}+2}$=$\frac{{4}^{1-x}+2-{4}^{1-x}}{{4}^{1-x}+2}$=$\frac{2}{{4}^{1-x}+2}$=$\frac{{4}^{x}}{{4}^{x}+2}$=f(x),
得:f(x)+f(1-x)=1,
∴f($\frac{1}{101}$)+f($\frac{2}{101}$)+…+f($\frac{100}{101}$)=50[f($\frac{1}{101}$)+f(1-$\frac{1}{101}$)]=50.
故答案为:50.
点评 本题考查的知识点是函数的对称性,其中熟练掌握函数对称变换法则,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:选择题
设
为表示
三者中较小的一个, 若函数
,则不等式
的解集为( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{5}-1}}{2}$ | D. | $\frac{{\sqrt{5}+1}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com