精英家教网 > 高中数学 > 题目详情
下列关于函数f(x)=(2x-x2)ex的判断正确的是
①f(x)>0的解集是{x|0<x<2};
②f(-)是极小值,f()是极大值;
③f(x)没有最小值,也没有最大值.
A.①③ B.①②C.②D.①②③
B
′(x)=ex(2-x2),由f′(x)=0得x=±,
由f′(x)<0得x> 或x<- ,
由f′(x)>0得- <x< ,
∴f(x)的单调减区间为(-∞,- ),( ,+∞).单调增区间为(-, ).
∴f(x)的极大值为f( ),极小值为f(- ),故③不正确.
∵x<- 2 时,f(x)<0恒成立.
∴f(x)无最小值,但有最大值f( )
∴②正确④不正确..
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题10分)已知函数
(1)利用函数单调性的定义,判断函数上的单调性;
(2)若,求函数上的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知函数.
(1)若是函数的极值点,求的值;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题共10分)已知函数
(Ⅰ)若曲线处的切线与直线垂直,求的值;
(Ⅱ)若函数在区间()内是增函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于函数,存在,使得成立,则实数的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知函数. 
(1)求函数的单调区间;
(2)设函数.是否存在实数,使得?若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x2(ax+b)在x=2时有极值(其中a,b∈R),其图象在点(1,f(1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为           (   )
A.(-∞,0)B.(0,2)C.(2,+∞) D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数
(Ⅰ)当时,求函数的单调递增区间;
(Ⅱ)在区间内至少存在一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知是函数的一个极值点.
(Ⅰ)求
(Ⅱ)求函数的单调区间.

查看答案和解析>>

同步练习册答案