精英家教网 > 高中数学 > 题目详情
对于函数,存在,使得成立,则实数的取值范围是(    )
A.B.C.D.
C
解:因为函数,存在,使得成立,只要求解函数在给定区间的最小值即可,那么就可以得到a的范围小于最小值,并为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数
(1)当时,若函数上为单调增函数,求的取值范围;
(2)当时,求证:函数f (x)存在唯一零点的充要条件是
(3)设,且,求证:<

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在(0,1)上不是单调函数,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在上的可导函数,且满足. 若,则
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是导函数的图象,那么函数在下面哪个区间是减函数(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若函数 f(x)与 g(x)的图像在 x=x0处的切线平行,求x0的值
(2)当曲线有公共切线时,求函数上的最值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列关于函数f(x)=(2x-x2)ex的判断正确的是
①f(x)>0的解集是{x|0<x<2};
②f(-)是极小值,f()是极大值;
③f(x)没有最小值,也没有最大值.
A.①③ B.①②C.②D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中,求的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的单调区间;
(2)当时,若方程有两个不同的实根
(ⅰ)求实数的取值范围;
(ⅱ)求证:.

查看答案和解析>>

同步练习册答案