精英家教网 > 高中数学 > 题目详情
下列函数中增加得最快的是(  )
A、y=2x
B、y=3x
C、y=4x
D、y=ex
考点:对数函数、指数函数与幂函数的增长差异
专题:函数的性质及应用
分析:直接根据正比例函数、指数函数的增长差异,得出结论.
解答: 解:由于函数y=2x,y=3x,y=4x是正比咧函数,
函数y=ex是指数函数,
由于指数函数的增长速度最快,
故选D.
点评:本题主要考查正比例函数、指数函数的增长差异,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2sinx,各项均不相等的有限项数列{xn}的各项xi满足|xi|≤1.令F(n)=
n
i=1
x1
n
i=1
f(xi)
,n≥3且n∈N,例如:F(3)=(x1+x2+x3)•(f(x1)+f(x2)+f(x3)).
下列给出的结论中:
①存在数列{xn}使得F(n)=0;
②如果数列{xn}是等差数列,则F(n)>0;
③如果数列{xn}是等比数列,则F(n)>0;
正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
x3+
1
2
ax2+(a-1)x+1在区间(-1,1)上是减函数,在区间(2,3)是增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ax+1-2(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m、n>0,则
1
m
+
2
n
的最小值为(  )
A、3
B、3+2
2
C、2+2
2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

参数方程
x=cosθ
y=1+cosθ
(θ为参数)表示的曲线是(  )
A、圆B、直线C、线段D、射线

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如图所示函数图象

其中可能为函数f(x)=ax3+bx2+cx+d(a≠0)的图象是(  )
A、①②B、②④C、①③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2xlnx,g(x)=-x2+ax-3,对一切x∈(0,+∞),f(x)≥g(x)恒成立,则实数a的取值范围是(  )
A、(-∞,4]
B、(-∞,5]
C、[6,+∞)
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若连续函数f(x)在R上可导,其导函数为f′(x),且函数y=(2-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )
A、f(x)有极大值f(3)和极小值f(2)
B、f(x)有极大值f(-3)和极小值f(2)
C、f(x)有极大值f(3)和极小值f(-3)
D、f(x)有极大值f(-3)和极小值f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:f(x)-cos(
6n+1
3
π+2x)+cos(
6n-1
3
π-2x)+2
3
sin(
π
3
+2x)(x∈R,n∈Z),
(1)求函数f(x)的值域和最小正周期;
(2)写出f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案