精英家教网 > 高中数学 > 题目详情
10.已知复数z1=3+4i,z2=t+i(其中i为虚数单位),且${z_1}•\overline{z_2}$是实数,则实数t等于$\frac{3}{4}$.

分析 利用复数代数形式的乘除运算化简,再由虚部为0求得t的值.

解答 解:∵z1=3+4i,z2=t+i,
∴${z_1}•\overline{z_2}$=(3+4i)(t-i)=3t+4+(4t-3)i,
∵${z_1}•\overline{z_2}$是实数,
∴4t-3=0,得t=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.单调递减的数列{an}的通项公式an=$\left\{\begin{array}{l}{(1-3a)n+14a,n≤8}\\{lo{g}_{a}(n-8),n>8}\end{array}\right.$,则正数a的取值范围是(  )
A.($\frac{1}{3}$,1)B.($\frac{1}{3}$,$\frac{4}{5}$)C.(0,$\frac{4}{5}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a∈Z,且0<a<13,若532017+a能被13整数,则a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a、b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图ABC-A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.
(1)求异面直线AD、EF所成角的大小;
(2)求三棱锥D-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f-1(x)为$f(x)=\frac{2x}{x+1}$的反函数,则f-1(1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数$f(x)=cos({2x+\frac{π}{3}})+{sin^2}x$.
(1)求函数y=f(x)的最大值和最小正周期;
(2)设A、B、C为△ABC的三个内角,若$cosB=\frac{1}{3}$,$f({\frac{C}{3}})=-\frac{1}{4}$,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x(1+a|x|)(a∈R),则在同一个坐标系下函数f(x+a)与f(x)的图象不可能的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案