精英家教网 > 高中数学 > 题目详情
17.已知不等式a(2x-2-x)+$\frac{{2}^{2x}+{2}^{-2x}}{2}$≥0在x∈[1,2]时恒成立,则实数a的取值范围是[-$\frac{17}{12}$,+∞).

分析 利用换元法简化不等式,令t=2x-2-x,t∈[$\frac{3}{2}$,$\frac{15}{4}$],22x+2-2x=t2+2,整理可得a≥-$\frac{1}{2}$(t+$\frac{2}{t}$),t∈[$\frac{3}{2}$,$\frac{15}{4}$],根据函数y=t+$\frac{2}{t}$的单调性求出最大值即可.

解答 解:a(2x-2-x)+$\frac{{2}^{2x}+{2}^{-2x}}{2}$≥0在x∈[1,2]时恒成立,
令t=2x-2-x,t∈[$\frac{3}{2}$,$\frac{15}{4}$],
∴22x+2-2x=t2+2,
∴a≥-$\frac{1}{2}$(t+$\frac{2}{t}$),t∈[$\frac{3}{2}$,$\frac{15}{4}$],
显然当t=$\frac{3}{2}$是,右式取得最大值为-$\frac{17}{12}$,
∴a≥-$\frac{17}{12}$.
故答案为[-$\frac{17}{12}$,+∞).

点评 考查了换元法的应用和恒成立问题的转化思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.数列{an}满足a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*).
(1)计算a2,a3,a4,并由此猜想通项公式an
(2)用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过抛物线y2=2px(p>0)焦点F的一条直线l和此抛物线相交,两个交点的坐标分别为A(x1,y1),B(x2,y2).则:
(1)x1,x2的值为多少?
(2)$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3{p}^{2}}{4}$
(3)设三角形AOB的面积为S,$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为θ,写出函数S=S(θ)的分析式,并求出该函数的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(-1,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设M=($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)满足a+b+c=1(其中a>0,b>0,c>0),则M的取值范围是(  )
A.[0,$\frac{1}{8}$)B.[$\frac{1}{8}$,1)C.[1,8)D.[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将二项式(x+$\frac{2}{\sqrt{x}}$)6展开式中各项重新排列,则其中无理项互不相邻的概率是(  )
A.$\frac{2}{7}$B.$\frac{1}{35}$C.$\frac{8}{35}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆C以抛物线x2=4y的焦点为圆心,且被该抛物线的准线截得的弦长为6,则圆C的标准方程式是x2+(y-1)2=13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P是平面区域M:$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{\sqrt{3}x+y-\sqrt{3}≤0}\end{array}\right.$内的任意一点,P到平面区域M的边界的距离之和的取值范围为[$\frac{\sqrt{3}}{2},\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)=$\left\{\begin{array}{l}x-2,x≤3\\ 2+{log_{\frac{1}{2}}}x,x>3\end{array}$,则f[f(4)]=(  )
A.4B.1C.-1D.-2

查看答案和解析>>

同步练习册答案