精英家教网 > 高中数学 > 题目详情
2.将二项式(x+$\frac{2}{\sqrt{x}}$)6展开式中各项重新排列,则其中无理项互不相邻的概率是(  )
A.$\frac{2}{7}$B.$\frac{1}{35}$C.$\frac{8}{35}$D.$\frac{7}{24}$

分析 写出二项展开式的通项,求出所含有理项及无理项的个数,利用插空排列得到无理项互不相邻的事件数,由古典概型概率计算公式求得答案.

解答 解:由${T}_{r+1}={C}_{6}^{r}{x}^{6-r}(\frac{2}{\sqrt{x}})^{r}={2}^{r}{C}_{6}^{r}{x}^{6-\frac{3}{2}r}$,
可知,当r=0,2,4,6时,为有理项,
则二项式(x+$\frac{2}{\sqrt{x}}$)6展开式中有4项有理项,3项为无理项.
基本事件总数为${A}_{7}^{7}$.
无理项互不相邻有${A}_{4}^{4}•{A}_{5}^{3}$.
∴无理项互不相邻的概率是P=$\frac{{A}_{4}^{4}•{A}_{5}^{3}}{{A}_{7}^{7}}=\frac{2}{7}$.
故选:A.

点评 本题考查二项式系数的性质,考查了排列组合及古典概型概率计算公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列12,-22,32,-42,…,(-1)n+1n2,….
(1)计算S1,S2,S3,S4的值;
(2)根据(1)中的结果,猜想Sn的表达式,并用数学归纳法进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设抛物线y2=2x的焦点为F,过点A(2,2)和B($\frac{3}{2}$,-$\sqrt{3}$)的直线与抛物线的准线相交于C,设△BCF与△ACF的面积分别为S1、S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=-2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.2B.$2\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知不等式a(2x-2-x)+$\frac{{2}^{2x}+{2}^{-2x}}{2}$≥0在x∈[1,2]时恒成立,则实数a的取值范围是[-$\frac{17}{12}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若曲线f(x)=ex+$\frac{m}{x}$在(-∞,0)上存在垂直y轴的切线,则实数m的取值范围为(  )
A.(-∞,$\frac{4}{{e}^{2}}$]B.(0,$\frac{4}{{e}^{2}}$]C.(-∞,4]D.(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px(p>0),过焦点F,且倾斜角为60°的直线与抛物线在第一象限交于点M,若|FM|=4,则抛物线方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限内的交点,F1,F2分别是双曲线的左右焦点且|PF1|=3|PF2|,则双曲线的离心率为$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若$\overrightarrow{OA}$•$\overrightarrow{AF}$=-4,则点A的坐标是(  )
A.(1,±2)B.(1,2)C.(1,-2 )D.(1,±1)

查看答案和解析>>

同步练习册答案