| A. | $\frac{2}{7}$ | B. | $\frac{1}{35}$ | C. | $\frac{8}{35}$ | D. | $\frac{7}{24}$ |
分析 写出二项展开式的通项,求出所含有理项及无理项的个数,利用插空排列得到无理项互不相邻的事件数,由古典概型概率计算公式求得答案.
解答 解:由${T}_{r+1}={C}_{6}^{r}{x}^{6-r}(\frac{2}{\sqrt{x}})^{r}={2}^{r}{C}_{6}^{r}{x}^{6-\frac{3}{2}r}$,
可知,当r=0,2,4,6时,为有理项,
则二项式(x+$\frac{2}{\sqrt{x}}$)6展开式中有4项有理项,3项为无理项.
基本事件总数为${A}_{7}^{7}$.
无理项互不相邻有${A}_{4}^{4}•{A}_{5}^{3}$.
∴无理项互不相邻的概率是P=$\frac{{A}_{4}^{4}•{A}_{5}^{3}}{{A}_{7}^{7}}=\frac{2}{7}$.
故选:A.
点评 本题考查二项式系数的性质,考查了排列组合及古典概型概率计算公式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $2\sqrt{3}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{4}{{e}^{2}}$] | B. | (0,$\frac{4}{{e}^{2}}$] | C. | (-∞,4] | D. | (0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,±2) | B. | (1,2) | C. | (1,-2 ) | D. | (1,±1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com