精英家教网 > 高中数学 > 题目详情
13.设抛物线y2=2x的焦点为F,过点A(2,2)和B($\frac{3}{2}$,-$\sqrt{3}$)的直线与抛物线的准线相交于C,设△BCF与△ACF的面积分别为S1、S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{4}{5}$.

分析 过A,B分别向抛物线的准线作垂线,垂足分别为E,N,在△AEC中,BN∥AE,利用$\frac{{S}_{1}}{{S}_{2}}$=$\frac{|BC|}{|AC|}$=$\frac{|BN|}{|AE|}$,即可求出$\frac{{S}_{1}}{{S}_{2}}$.

解答 解:∵抛物线方程为y2=2x,
∴焦点F的坐标为($\frac{1}{2}$,0),准线方程为x=-$\frac{1}{2}$,
如图,过A,B分别向抛物线的准线作垂线,垂足分别为E,N,
∵在△AEC中,BN∥AE,
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{|BC|}{|AC|}$=$\frac{|BN|}{|AE|}$=$\frac{\frac{3}{2}+\frac{1}{2}}{2+\frac{1}{2}}$=$\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知n∈N*,n≥2,求证:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线y2=-4x上横坐标为-6的点到焦点F的距离为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2-3x+2<0},N={x|2<2x<8},则(  )
A.M=NB.M∩N=∅C.M?ND.M⊆N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过抛物线y2=2px(p>0)焦点F的一条直线l和此抛物线相交,两个交点的坐标分别为A(x1,y1),B(x2,y2).则:
(1)x1,x2的值为多少?
(2)$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3{p}^{2}}{4}$
(3)设三角形AOB的面积为S,$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为θ,写出函数S=S(θ)的分析式,并求出该函数的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线y2=2px(p>0)的准线与椭圆$\frac{x^2}{4}+\frac{y^2}{6}$=1相切,则p的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(-1,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将二项式(x+$\frac{2}{\sqrt{x}}$)6展开式中各项重新排列,则其中无理项互不相邻的概率是(  )
A.$\frac{2}{7}$B.$\frac{1}{35}$C.$\frac{8}{35}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{x^2}{{{{(x-a)}^2}}}$,
(1)若a>1,试确定f(x)在(0,1)上单调性;并给出证明.
(2)当a=1,x∈(1,+∞)时,问是否存在一个常数c,使得对于任意给定的正数ε,总存在实数G,使得当x>G时,有|f(x)-c|<ε.

查看答案和解析>>

同步练习册答案