分析 由$\frac{1}{\sqrt{n}}$=$\frac{2}{2\sqrt{n}}$<$\frac{2}{\sqrt{n}+\sqrt{n-1}}$=2($\sqrt{n}$-$\sqrt{n-1}$)(n∈N*,n≥2),运用裂项相消求和和放缩法,结合不等式的性质即可得证.
解答 证明:由$\frac{1}{\sqrt{n}}$=$\frac{2}{2\sqrt{n}}$<$\frac{2}{\sqrt{n}+\sqrt{n-1}}$
=2($\sqrt{n}$-$\sqrt{n-1}$)(n∈N*,n≥2),
可得1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2($\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+2-$\sqrt{3}$+…+$\sqrt{n}$-$\sqrt{n-1}$)
=2($\sqrt{n}$-1)<2$\sqrt{n}$.
则原不等式成立.
点评 本题考查不等式的证明,注意运用裂项相消和放缩法证明,考查运算能力和推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 增加了一项$\frac{1}{2(k+1)}$ | B. | 增加了一项$\frac{1}{2k+1}+\frac{1}{2(k+1)}$ | ||
| C. | 增加了$\frac{1}{2k+1}+\frac{1}{2(k+1)}$,又减少了$\frac{1}{k+1}$ | D. | 增加了 $\frac{1}{2(k+1)}$,又减少了$\frac{1}{k+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{25}{3}$ | B. | $\frac{25}{8}$ | C. | $\frac{100}{9}$ | D. | $\frac{25}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com