精英家教网 > 高中数学 > 题目详情
11.抛物线y=8x2的准线方程是y=-$\frac{1}{32}$.

分析 化简抛物线方程为标准方程,然后求解准线方程.

解答 解:抛物线y=8x2的标准方程为:x2=$\frac{1}{8}$y,
p=$\frac{1}{16}$,
抛物线的准线方程为:y=-$\frac{1}{32}$.
故答案为:y=-$\frac{1}{32}$.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图所示,圆锥的轴截面为等腰直角△SAB,Q为底面圆周上一点.
(Ⅰ)若QB的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,求此圆锥的体积和侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F为抛物线y2=2px(p>0)的焦点,点A(p,2)在抛物线上,则|AF|=(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{3}{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设x1,x2,…,x5的实数,求具有下述性质的最小正整数n:如果n个不同的、形如xp+xq+xr(1≤p<q<r≤5)的和都等于0,则x1=x2=…=x5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线y=4x2上的一点M到焦点的距离为4,则点M的纵坐标为(  )
A.16B.36C.$\frac{31}{8}$D.$\frac{63}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即$\frac{n}{2}$);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则n的所有不同值的个数为(  )
A.4B.6C.32D.128

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知n∈N*,n≥2,求证:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.证明:
(1)x>0时,lnx≤x-1;
(2)x>1时$\frac{x-1}{lnx}$>$\frac{cosx}{sinx+\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2-3x+2<0},N={x|2<2x<8},则(  )
A.M=NB.M∩N=∅C.M?ND.M⊆N

查看答案和解析>>

同步练习册答案