精英家教网 > 高中数学 > 题目详情
10.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=-2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.2B.$2\sqrt{3}$C.4D.8

分析 由已知可得$\overrightarrow{a}•\overrightarrow{b}=2$,再由|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow{b})^{2}}$,展开后代入数量积公式得答案.

解答 解:由|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=-2,
得$\overrightarrow{a}•\overrightarrow{b}-{\overrightarrow{a}}^{2}=-2$,
∴$\overrightarrow{a}•\overrightarrow{b}=2$.
则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow{b})^{2}}=\sqrt{4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=$\sqrt{4×{2}^{2}-4×2+{2}^{2}}=2\sqrt{3}$.
故选:B.

点评 本题考查平面向量的数量积运算,考查了向量模的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.证明:
(1)x>0时,lnx≤x-1;
(2)x>1时$\frac{x-1}{lnx}$>$\frac{cosx}{sinx+\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2-3x+2<0},N={x|2<2x<8},则(  )
A.M=NB.M∩N=∅C.M?ND.M⊆N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线y2=2px(p>0)的准线与椭圆$\frac{x^2}{4}+\frac{y^2}{6}$=1相切,则p的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(-1,3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a,b,c∈R+,求$\frac{a}{3b+c}$+$\frac{b}{c+2a}$+$\frac{c}{2a+3b}$的最小值$\frac{\sqrt{6}}{6}$+$\frac{\sqrt{3}}{3}$+$\frac{\sqrt{2}}{2}$-$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将二项式(x+$\frac{2}{\sqrt{x}}$)6展开式中各项重新排列,则其中无理项互不相邻的概率是(  )
A.$\frac{2}{7}$B.$\frac{1}{35}$C.$\frac{8}{35}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sinα+2sin2$\frac{α}{2}$=2(0<α<π),则tanα的值为(  )
A.1B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.利用手机发放红包已成近几年过年的一大时尚.某市一调查机构针对“过年收取手机红包”的情况,抽取了600人进行了随机调查,调查结果如表:
收到的手机红包金额t(单位:元)t≤100100<t≤1000t>1000
人数(单位:人)15010050
将频率视为概率,试解决下列问题:
(Ⅰ)从该市市民中任意选取1人,求其收到的手机红包金额超过100元的概率;
(Ⅱ)从该市市民中任意选取4人,求至多有1人收到的手机红包金额超过100元的概率;
(Ⅲ)若从所抽取的600人中按照分层抽样的方法随机抽取12人,再从这12人中随机抽取3人,记其中收到的手机红包金额超过100元的人数为X.
(i)求所抽取的12人中,收到的手机红包金额超过100元的人数;
(ii)求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案