精英家教网 > 高中数学 > 题目详情
16.从2、4中选一个数字,从1、3、5中选两个数字,组成无重复数字的三位数,其中奇数的个数为24.

分析 本题是从两个偶数中任选一个,三个奇数中任选两个共三个数字组成的无重复数字的三位奇数问题,解答时先找出总的选法情况,然后分析得到每一种选法对应6种不同的排列,其中有4个是奇数,2个偶数,则六种选法对应24个不同的奇数.

解答 解:从2,4中选一个数字,从1,3,5中选两个数字,选法种数共有(2,1,3),(2,1,5),(2,3,5),(4,1,3),(4,1,5),(4,3,5)六种,
每一种选法可排列组成${A}_{3}^{3}$=6个无重复数字的三位数,其中奇数的个数有4个,故六种选法组成的无重复数字的三位奇数共有4×6=24个.
故答案为:24.

点评 本题考查了排列、组合及简单的计数问题,考查了有条件限制排列,解答排列问题时要正确区分有重复排列和无重复排列,关键是做到不重不漏,此题是中低档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.全国篮球职业联赛的某个赛季在H队与F队之间角逐.采取七局四胜制(无平局),即若有一队胜4场,则该队获胜并且比赛结束.设比赛双方获胜是等可能的.根据已往资料显示,每场比赛的组织者可获门票收入100万元.组织者在此赛季中,两队决出胜负后,门票收入不低于500万元的概率是0.875.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知两向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3,
(Ⅰ)求|5$\overrightarrow{a}$-$\overrightarrow{b}$|的值
(Ⅱ)求向量5$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某社区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名音乐特长生,要从中选出3名调查学习训练情况,记作②.那么完成上述两项调查应采用的抽样方法是(  )
A.①用简单随机抽样  ②用系统抽样B.①用分层抽样  ②用简单随机抽样
C.①用系统抽样  ②用分层抽样D.①用分层抽样  ②用系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.C ${\;}_{n}^{0}$C${\;}_{n}^{n}$+C${\;}_{n}^{1}$C${\;}_{n}^{n-1}$+C${\;}_{n}^{2}$C${\;}_{n}^{n-2}$+…+C${\;}_{n}^{n-1}$C${\;}_{n}^{1}$+C${\;}_{n}^{n}$C${\;}_{n}^{0}$等于(  )
A.C${\;}_{2n}^{n-1}$+C${\;}_{2n}^{n+1}$B.(C${\;}_{2n}^{n}$)2
C.C${\;}_{2n}^{n}$D.2C${\;}_{2n-1}^{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知关于x的方程-2x2+bx+c=0,若b、c∈{0,1,2,3,4},记“该方程有实数根x1、x2且满足-1≤x1≤x2≤2”为事件A,则事件A发生的概率为$\frac{16}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$\lim_{n→∞}\frac{{(a-2){n^2}+bn+3}}{n+1}$=4,则a+b=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{1}{{\sqrt{{x^2}-x-2}}}$的定义域为(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在数轴上0和3之间任取一实数x,则使“log2x<1”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{2}{3}$D.$\frac{1}{12}$

查看答案和解析>>

同步练习册答案