精英家教网 > 高中数学 > 题目详情
曲线y=1-
2
x+2
在点(-1,-1)处的切线方程为(  )
A、y=2x+1
B、y=2x-1
C、y=-2x-3
D、y=-2x-2
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求函数的导数,利用导数的几何意义即可求出切线方程.
解答: 解:函数的导数为f′(x)=
2
(x+2)2

则在点(-1,-1)处切线斜率k=f′(-1)=2,
则对应的切线方程为y+1=2(x+1),
即y=2x+1,
故选:A.
点评:本题主要考查函数切线的求解,根据导数的几何意义求出切线斜率是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知梯形ABCD,AD∥BC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E,F分别是AB,CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)G是BC上的一点,且BD⊥EG,若x=3,求三棱锥B-AEG的体积;
(2)当x取何值时,三棱锥D-BCF的体积是最大值,最大值是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列说法
①一个命题的逆命题为真,则它的逆否命题一定为真;
②一个命题的否命题为真,则它的逆命题一定为真;
③“实数a,b全为0”是“a2+b2=0”的充分必要条件;
④“p或q”为真命题是“p且q”为真命题的充分条件;
其中正确的是
 
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x
lnx
,f(x)=g(x)-ax.
(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)若函数f(x)在区间(1,+∞)上是减函数,求实数a的最小值;
(Ⅲ)若函数h(x)=g(x)-bx2恰有两个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,1,sinα),
b
=(sinα,1,cosα),且sinα≠cosα,则向量
a
+
b
a
-
b
的夹角是(  )
A、0°B、30°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(π+α)=-
1
2
3
2
π<α<2π,则sinα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且f(x+3)=f(x),当x∈(-2,0)时,f(x)=2x,则f(2015)+f(2014)+f(2013)=
 

查看答案和解析>>

同步练习册答案