| A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 2$\sqrt{2}$ |
分析 过点A作BC边上的高AD交BC于点D,连结PD.则∠PDA即为平面PBC和平面ABC夹角的平面角,利用勾股定理及三角形面积的不同计算方法即得结论.
解答
解:过点A作BC边上的高AD交BC于点D,连结PD.
根据题意可得∠PDA即为平面PBC和平面ABC夹角的平面角,
设PA=AB=AC=a,则BC=$\sqrt{A{C}^{2}+A{B}^{2}}$=$\sqrt{2}$a,
∵$\frac{1}{2}$AD•BC=$\frac{1}{2}$AB•AC,
∴AD=$\frac{AB•AC}{BC}$=$\frac{\sqrt{2}}{2}$a,
∴tan∠PDA=$\frac{PA}{AD}$=$\frac{a}{\frac{\sqrt{2}a}{2}}$=$\sqrt{2}$,
故选:B.
点评 本题考查求二面角的三角函数值,涉及到勾股定理、三角形的面积计算公式等知识,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com