精英家教网 > 高中数学 > 题目详情
20.正四棱锥P-ABCD的底边及侧棱长都是2,M,N分别为底边CD,CB上的动点,且CM=CN,当四面体P-AMN的体积最大时,直线PA与面PMN的所成角的大小是45°.

分析 由题意画出图形,设CM=CN=x,把四面体P-AMN的底面的面积的平方用含有x的代数式表示,求导得到使底面积最大的x值,再由高一定可得体积最大,由此求出体积最大时直线PA与面PMN的所成角的大小.

解答 解:如图,

设CM=CN=x,则DM=1-x,MN=$\sqrt{2}x$,
AM2=4+(2-x)2=8-4x+x2,$A{G}^{2}=A{M}^{2}-M{G}^{2}=8-4x+{x}^{2}-\frac{1}{2}{x}^{2}$=$\frac{1}{2}{x}^{2}-4x+8$.
${{S}_{△AMN}}^{2}=\frac{1}{4}(\sqrt{2}x)^{2}•(\frac{1}{2}{x}^{2}-4x+8)$=$\frac{1}{4}{x}^{4}-2{x}^{3}+4{x}^{2}$.
令f(x)=$\frac{1}{4}{x}^{4}-2{x}^{3}+4{x}^{2}$,则f′(x)=x3-6x2+8x,
由f′(x)=0,得x=2或x=4(舍),
∴当x=2时,${{S}_{△AMN}}^{2}$有最大值,即S△AMN有最大值,四面体P-AMN的体积最大.
此时M与D重合,N与B重合,由△BAD≌△DPB,可得直线PA与面PMN的所成角的大小是45°.
故答案为:45°.

点评 本题考查了空间角的求法,考查了利用导数求函数的最值,考查学生灵活处理问题的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足x2+y2-4x+1=0.
(1)求x2+y2的最值;
(2)求$\frac{y}{x+1}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.P是直角△ABC所在平面外一点,若PA⊥平面ABC,PA=AB=AC,则平面PBC和平面ABC夹角的正切值是(  )
A.1B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四面体ABCD中,点G1,G2,G3,G4分别是△BCD,△ACD,△ABD,△ABC的重心.求证:AG1,BG2,CG3,DG4交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD的底面是正方形,侧棱PD⊥底面ABCD,点E是棱PB的中点.
(Ⅰ)求证:AC⊥PB
(Ⅱ)若PD=2,AB=$\sqrt{2}$,求直线AE和平面PDB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆E的极坐标方程为ρ=4$\sqrt{3}$sin(θ+$\frac{π}{6}$),直线l的参数方程为$\left\{\begin{array}{l}{x=2t+n}\\{y=4t}\end{array}\right.$(t为参数,n∈R)
(1)以极点为坐标原点,极轴为x轴的正半轴建立直角坐标系,求圆E的直角坐标方程;
(2)圆E上有且仅有三点到直线l的距离为$\sqrt{3}$,求实数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从某中学1000名学生中随机抽取m名学生进行问卷调查.根据问卷取得了这m名学生星期日运动锻炼时间(单位:分钟)的数据频率分布直方图,如图,已知抽取的学生中星期日运动时间少于60分钟的人数为5人
(Ⅰ)求m的值并求星期日运动时间在[90,120]内的概率
(Ⅱ)若在第一组,第二组,第七组,第八组中共抽取3人调查影响星期日运动时间的原因,记抽到的“星期日运动时间少于60分钟”的学生人数为ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ax-bx2(a>0).
(1)当b>1时,若对任意x∈[0,1],都有|f(x)|≤1,证明:b-1≤a≤2$\sqrt{b}$;
(2)当0<b≤1时,若对任意x[0,1],都有|f(x)|≤1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.画出函数的图象:y=arccos(2x-1)

查看答案和解析>>

同步练习册答案