精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点.
(Ⅰ)求证:面PDE⊥面PAB;
(Ⅱ)若PA=AB=2,求PC与面PAD所成角的正弦值.

分析 (Ⅰ)根据几何性质得出DE⊥AB,DE⊥AP,运用定理得出DE⊥面PAB,借助面面垂直的判定即可得证.
(II)得证CF⊥面PAD,判断出∠CPF为PA与面PAD所成角,运用三角形Rt△CAP求解即可.

解答 (Ⅰ)证明∵底面ABCD是菱形,∠BCD=60°,
∴△ABD为正三角形,
E是AB的中点,DE⊥AB,
PA⊥面ABCD,DE?面ABCD,
∴DE⊥AP,
∴DE⊥面PAB,
∵DE?面PDE,
∴面PED⊥面PAB,
(II)在面ABCD内,过点C作CF⊥AD,交AD延长线于F,连接PF,
∵PA⊥面ABCD,CF?面ABCD,
∴PA⊥CF,
又CF⊥面PAD,
∴∠CPF为PA与面PAD所成角,
在Rt△CFD中,∠CDF=60°,
∴CF=$\sqrt{3}$,
在Rt△CAP中AC=2$\sqrt{3}$,PA=2,
∴PC=4,
∴sin∠CPF=$\frac{\sqrt{3}}{4}$.

点评 本题考查了直线平面的垂直问题,直线与平面所成的角的求解,关键是确定垂线,找出平面角,转化到三角形求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在棱长都相等的四面体ABCD中,点E是棱AD的中点.
(1)设侧面ABC与底面BCD所成角为α,求tanα.
(2)设CE与底面BCD所成角为β,求cosβ.
(3)在直线BC上是否存在着点F,使直线AF与CE所成角为90°,若存在,试确定F点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在三棱锥P-ABC中,AC=BC=AP=BP=$\sqrt{2}$,PC=$\sqrt{3}$,AB=2.
(1)求证:PC⊥AB;
(2)求二面角A-PB-C的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.P是直角△ABC所在平面外一点,若PA⊥平面ABC,PA=AB=AC,则平面PBC和平面ABC夹角的正切值是(  )
A.1B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在四棱锥P-ABCD中,底面ABCD是等腰梯形,AD∥BC,∠BAD=60°,PA⊥平面ABCD,AD=2,BC=1,PA=2$\sqrt{2}$,H,G分别为AD,PC的中点.
(Ⅰ)求证:PH∥平面GBD
(Ⅱ)求二面角G-BD-A平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四面体ABCD中,点G1,G2,G3,G4分别是△BCD,△ACD,△ABD,△ABC的重心.求证:AG1,BG2,CG3,DG4交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD的底面是正方形,侧棱PD⊥底面ABCD,点E是棱PB的中点.
(Ⅰ)求证:AC⊥PB
(Ⅱ)若PD=2,AB=$\sqrt{2}$,求直线AE和平面PDB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从某中学1000名学生中随机抽取m名学生进行问卷调查.根据问卷取得了这m名学生星期日运动锻炼时间(单位:分钟)的数据频率分布直方图,如图,已知抽取的学生中星期日运动时间少于60分钟的人数为5人
(Ⅰ)求m的值并求星期日运动时间在[90,120]内的概率
(Ⅱ)若在第一组,第二组,第七组,第八组中共抽取3人调查影响星期日运动时间的原因,记抽到的“星期日运动时间少于60分钟”的学生人数为ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某工厂生产的甲、乙、丙三种型号产品的数量之比为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中甲种产品有20件,则n=(  )
A.50B.100C.150D.200

查看答案和解析>>

同步练习册答案