精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,a2+a4=14,a5+a7=26.
(1)求数列{an}的通项公式;
(2)若bn(an2-1)=8,数列{bn}的前n项和为Tn,求证:1≤Tn<2.
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)利用等差数列的通项公式即可得出;
(2)由(1)可得bn=
8
(2n+1)2-1
=2(
1
n
-
1
n+1
)
.利用“裂项求和”可得Tn,再利用数列的单调性即可证明.
解答: (1)解:设等差数列{an}的公差为d,∵a2+a4=14,a5+a7=26.
2a1+4d=14
2a1+10d=26
,解得
a1=3
d=2

∴an=3+2(n-1)=2n+1.
(2)证明:∵bn(an2-1)=8,
bn=
8
(2n+1)2-1
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

∴数列{bn}的前n项和为Tn=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]

=2(1-
1
n+1
)

∴Tn<2.
又数列{1-
1
n+1
}
单调递增,∴Tn≥T1=2×(1-
1
2
)
=1.
综上可得:1≤Tn<2.
点评:本题考查了等差数列的通项公式、“裂项求和”、数列的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,
b2-a2-c2
ac
=
cos(A+C)
sinAcosA

(1)求角A;
(2)若a=
2
,当sinB+cos(
12
-C)取得最大值时,求B和b.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据距离市中心的远近利用分层抽样的方法从某市有20家连锁店的连锁企业中随机抽取其中的5家连锁店调查得到离市中心的距离x(千米)与销售总额y(万元)的数据如下表所示:
距离x(千米)99.51010.511
销售总量y(万元)1110865
由散点图可知,销售量与距离x之间有较好的线性相关关系,且回归直线方程是y=-3.2x+a,若甲连锁店与乙连锁店之间的销售额相差6.4万元,则甲、乙两店距离市中心的距离相差.
A、0.5千米B、1千米
C、1.5千米D、2千米

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
25
+
y2
16
=1
的中心任作一直线交椭圆于P、Q两点,F是椭圆的一个焦点,则△PQF面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
x+1
的单调区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=1和两点A(-a,1),B(a,-1),且a>0,若圆C上存在点P,使得∠APB=90°,则a的最大值为.(  )
A、6
B、
35
C、2
6
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2
sin(2x-
π
4
)+2cos2x的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},对于任意的t∈[1,2],函数f(x)=ax3+(m+
1
2
)x2-cx在区间(t,3)上总不是单调函数,m的取什值范围是(  )
A、-
14
3
<m<-3
B、-3<m<-1
C、-
14
3
<m<-1
D、-3<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=|x-
1
a
|+|x+a|(a>0).证明:f(x)≥2;
(Ⅱ)若实数x,y,z满足x2+4y2+z2=3,求证:|x+2y+z|≤3.

查看答案和解析>>

同步练习册答案