精英家教网 > 高中数学 > 题目详情
2.已知△ABC的三边a,b,c所对角分别为A,B,C,且$\frac{sinA}{a}=\frac{sin\frac{B}{2}}{b}$,则cosB的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 由正弦定理结合已知可解得:cos$\frac{B}{2}$=$\frac{1}{2}$,结合B的范围,即可求得B的值,从而可求cosB的值.

解答 解:由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,结合已知$\frac{sinA}{a}=\frac{sin\frac{B}{2}}{b}$,
故有:sinB=2sin$\frac{B}{2}$cos$\frac{B}{2}$=sin$\frac{B}{2}$,解得:cos$\frac{B}{2}$=$\frac{1}{2}$,
因为:0<B<π,可得0$<\frac{B}{2}<\frac{π}{2}$,
所以$\frac{B}{2}$=$\frac{π}{3}$,解得B=$\frac{2π}{3}$,
所以cosB=cos$\frac{2π}{3}$=-$\frac{1}{2}$,
故选:C.

点评 本题主要考查了正弦定理,二倍角的正弦函数公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知六边形ABCDEF为正六边形,且$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,分别用$\overrightarrow{a}$、$\overrightarrow{b}$表示$\overrightarrow{DE}$、$\overrightarrow{AD}$、$\overrightarrow{BC}$、$\overrightarrow{EF}$、$\overrightarrow{FA}$、$\overrightarrow{CD}$、$\overrightarrow{AB}$、$\overrightarrow{CE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.幂函数f(x)=xα(α为常数)的图象经过点($\frac{1}{2},\frac{1}{4}$)
(1)求函数f(x)的解析式;
(2)x∈[-1,1]时,函数y=f(x)-2ax+3的最小值为g(a),求g(a)的表达式;
(3)是否存在实数m>n>0,使得a∈[n,m]时,总有g(a)∈[n2,m2]成立,若存在,求出m,n的值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=f(x)的图象关于点(a,b)对称的充要条件是f(a+x)+f(a-x)=2b(或f(x)+f(2a-x)=2b).如果函数y=f(x)的图象关于点(a,b)对称,则称点(a,b)为“中心点”,称函数y=f(x)为“准奇函数”.现有如下命题:
①若函数f(x)在R上的“中心点”为(a,f(a))则函数F(x)=f(x+a)-f(a)为R上的奇函数.
②若定义在R上的偶函数y=f(x)的“中心点”为(1,2),则方程f(x)=2在[-10,10]上至少有10个根.
③已知函数f(x)是定义在R上的增函数,点(1,0)为函数y=f(x-1)的“中心点”,若不等式f(m2-6m+21)+f(n2-8n)<0对任意的m,n∈R恒成立,则当m>3时,13<m2+n2<49.
其中正确的命题是①②③.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线f(x)=ex-ax,其中e为自然对数的底数.
(1)若曲线f(x)=y在x=0处的切线与直线x+y-3=0平行,求函数y=f(x)的极值;
(2)若不等式f(x)≥1在区间[0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=$\frac{a+lnx}{x}$,若曲线f(x)在点(e,f(e))处的切线与直线e2x-y+e=0垂直(其中e为自然对数的底数).
(1)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;
(2)求证:当x>1时,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知点S(-2,0)和圆O:x2+y2=4,ST是圆O的直经,从左到右M和N依次是ST的四等分点,P(异于S、T)是圆O上的动点,PD⊥ST,交ST于D,$\overrightarrow{PE}=λ\overrightarrow{ED}$,直线PS与TE交于C,|CM|+|CN|为定值.
(1)求λ的值及点C的轨迹曲线E的方程;
(2)设n是过原点的直线,l是与n垂直相交于Q点、与 轨迹E相交于A,B两点的直线,$|{\overrightarrow{OQ}}|=1$,是否存在上述直线l,使$\overrightarrow{AQ}•\overrightarrow{QB}=1$成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,将边长为2的正方形ABCD沿对角线BD对折,使得平面BCD⊥平面ABD,点E是BD中点,点F满足:FA∥CE,且FA=2$\sqrt{2}$.
(Ⅰ)求证:FA⊥平面ABD;
(Ⅱ)求证:AB∥平面CDF;
(Ⅲ)求三棱锥C-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x、y满足不等式组$\left\{\begin{array}{l}{x+2y≤1}\\{x≥0}\\{y≥0}\end{array}\right.$,则$\frac{4x+2y-16}{x-3}$的最大值为6;x2-x+y2-2y的最小值为$-\frac{4}{5}$.

查看答案和解析>>

同步练习册答案