精英家教网 > 高中数学 > 题目详情
6.古希腊毕达哥拉斯派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}{n^2}$+$\frac{1}{2}$n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数  N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形数  N(n,4)=n2
五边形数  N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六边形数   N(n,6)=2n2-n

可以推测N(n,k)的表达式,由此计算N(8,12)=288.

分析 观察已知式子的规律,归纳可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,把n=8,k=12代入可得答案.

解答 解:由归纳推理可得N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n,
故N(8,12)=$\frac{12-2}{2}×{8}^{2}+\frac{4-12}{2}×8$=288,
故答案为:288.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且圆与直线4x+3y-29=0相切,设直线ax-y+5=0(a
>0)与圆相交于A,B两点.
(1)求圆的标准方程;
(2)求实数a的取值范围;
(3)是否存在实数a,使得线AB的垂直平分线l过点P(-2,4)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为4,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
(Ⅰ) 求弦AB的长;
(Ⅱ) 若直线l的斜率为k,且$k≥\frac{{\sqrt{6}}}{2}$,求椭圆C的长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在三棱锥P-ABC中,已知∠ABC=90°,AB=BC=2,PA⊥平面ABC,且PA=4,则该三棱锥外接球的表面积为(  )
A.B.24πC.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知长方体ABCD-A1B1C1D1的所有顶点都在球O的球面上,AB=AD=1,AA1=2,则球O的球面面积为(  )
A.B.C.D.24π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$,则x+2y的最小值为(  )
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知边长为1的正方形ABCD,沿对角线AC把△ACD折起,使平面ACD⊥平面ABC,则三棱锥D-ABC的外接球的表面积等于2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等差数列{an}与等比数列{bn}满足:0<a1=b1<a5=b5,则下述结论一定成立的是(  )
A.a3<b3B.a3>b3C.a6<b6D.a6>b6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知三点A(1,0)、B(2,-3)、C(-2,a),向量$\overrightarrow{BA}$与$\overrightarrow{BC}$的夹角和直线BA与BC的夹角的关系.

查看答案和解析>>

同步练习册答案