精英家教网 > 高中数学 > 题目详情
14.在三棱锥P-ABC中,已知∠ABC=90°,AB=BC=2,PA⊥平面ABC,且PA=4,则该三棱锥外接球的表面积为(  )
A.B.24πC.16πD.32π

分析 确定PC的中点O为球心,求出球的半径,利用球的表面积公式,即可求得结论.

解答 解:∵PA⊥面ABC,BC?面ABC,
∴PA⊥BC
∵AB⊥BC,PA∩AB=A
∴BC⊥面PAB
∵PB?面PAB
∴BC⊥PB
取PC的中点O,则OP=OA=OB=OC,∴O为球心.
∵AB=BC=2,PA=4,∴PC=2$\sqrt{6}$,
∴球半径为r=$\sqrt{6}$,
∴该三棱锥的外接球的表面积为4πr2=24π.
故选B.

点评 本题考查球的表面积,解题的关键是确定球心与半径,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2x-2sin2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数y=f(x)在[-$\frac{π}{4}$,$\frac{π}{8}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-2x2+3x
(Ⅰ)求函数f(x)的极值;
(Ⅱ)证明:存在m∈(0,+∞),使得f(m)=f($\frac{1}{2}$)
(Ⅲ)记函数y=f(x)的图象为曲线Γ.设点A(x1,y1),B(x2,y2)是曲线Γ上的不同两点.如果在曲线Γ上存在点M(x0,y0),使得:
①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;
②曲线Γ在点M处的切线平行于直线AB,则称函数f(x)存在“中值伴随切线”,试问:函数f(x)是否存在“中值伴随切线”?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C有且只有一个公共点,且l∥MN,点P在直线l上运动,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值,并判断此时点P与以MN为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=lnx-$\frac{1}{2}$x-$\frac{1}{2}$ax2-2x
(Ⅰ)当a=3时,求f(x)的单调区间;
(Ⅱ)若a>-1,对任意的a有f(x)-b<0(x∈(0,1])恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\sqrt{3}$sin2x-cos2x-2m在[0,$\frac{π}{2}$]上有两个零点,则m的取值范围为(  )
A.[$\frac{1}{2}$,1)B.($\frac{1}{2}$,1]C.[$\frac{\sqrt{3}}{2}$,1)D.($\frac{\sqrt{3}}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.古希腊毕达哥拉斯派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为$\frac{n(n+1)}{2}$=$\frac{1}{2}{n^2}$+$\frac{1}{2}$n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数  N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形数  N(n,4)=n2
五边形数  N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六边形数   N(n,6)=2n2-n

可以推测N(n,k)的表达式,由此计算N(8,12)=288.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义函数F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),设函数f(x)=-x2+2x+4,g(x)=x+2(x∈R)函数F(f(x),g(x))的最大值与零点之和为(  )
A.4B.6C.$4-2\sqrt{5}$D.$2\sqrt{5}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}的公比为正数,且a4a8=2a52,a2=1,则a10=(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案