| A. | [$\frac{1}{2}$,1) | B. | ($\frac{1}{2}$,1] | C. | [$\frac{\sqrt{3}}{2}$,1) | D. | ($\frac{\sqrt{3}}{2}$,1] |
分析 由题意,利用两角差的正弦函数公式可得sin(2x-$\frac{π}{6}$)=m,利用x∈[0,$\frac{π}{2}$]时,可求2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],利用正弦函数的图象即可得解.
解答
解:因为f(x)=$\sqrt{3}$sin2x-cos2x-2m=2sin(2x-$\frac{π}{6}$)-2m,
则sin(2x-$\frac{π}{6}$)=m,当x∈[0,$\frac{π}{2}$]时,t=2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
结合y=sint,t∈[-$\frac{π}{6}$,$\frac{5π}{6}$]的函数图象知,
函数y=h(t)=sint 与直线y=m在[$\frac{π}{6}$,$\frac{5π}{6}$]上有两个交点,
如图:要使的两个函数图形有两个交点必须使得,$\frac{1}{2}$≤m<1.
故选:A.
点评 本题主要考查了两角差的正弦函数公式正弦函数的图象和性质的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 24π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com