精英家教网 > 高中数学 > 题目详情
18.如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距灯塔60海里的M处,下午2时到达这座灯塔的东偏南45°的N处,则该船航行的速度为$\frac{15\sqrt{6}}{2}$海里/小时.

分析 根据正弦定理解出MN即可求得速度.

解答 解:N=45°,∠MPN=75°+45°=120°,
在△PMN中,由正弦定理得$\frac{PN}{sinN}=\frac{MN}{sin∠MPN}$,即$\frac{60}{sin45°}=\frac{MN}{sin120°}$,
解得MN=$\frac{60sin120°}{sin45°}$=30$\sqrt{6}$(海里).
∵轮船航行时间为4小时,
∴轮船的速度为$\frac{30\sqrt{6}}{4}$=$\frac{15\sqrt{6}}{2}$海里/小时.
故答案为$\frac{15\sqrt{6}}{2}$.

点评 本题考查了正弦定理,解三角形的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知α,β∈(0,$\frac{π}{2}$),且tanα>cotβ,求证:α+β>$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sinα+cosα=-$\frac{1}{5}$,α,β∈(0,π),且cosβ=$\frac{3}{5}$,则sin(α+β)=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=AB=4,CD=1,动点P在边BC上,且满足$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AD}$(m,n均为正实数),则$\frac{1}{m}+\frac{1}{n}$的最小值为$\frac{7+4\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知圆E:(x+$\sqrt{3}$)2+y2=16,点F($\sqrt{3}$,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹Γ的方程;
(2)设直线l与(1)中轨迹Γ相交于A,B两点,直线AO,l,OB的斜率分别为k1,k,k2(其中k>0),若k1,k,k2恰好构成公比不为1的等比数列,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}}$,b=($\frac{1}{3}$)${\;}^{-\frac{1}{2}}}$,c=log2$\frac{1}{3}$,则a,b,c的大小关系是(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.据市场调查发现,某种产品在投放市场的30天中,其销售价格P(元)和时间t (t∈N)(天)的关系如图所示.
(Ⅰ) 求销售价格P(元)和时间t(天)的函数关系式;
(Ⅱ)若日销售量Q(件)与时间t(天)的函数关系式是Q=-t+40(0≤t≤30,t∈N),问该产品投放市场第几天时,日销售额y(元)最高,且最高为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如下表:
xx1$\frac{π}{12}$x2$\frac{7π}{12}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B141-21
(Ⅰ)求x2的值及函数f(x)的解析式;
(Ⅱ)请说明把函数g(x)=sinx的图象上所有的点经过怎样的变换可以得到函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设α∈(0,$\frac{π}{2}$),sinα=$\frac{\sqrt{6}}{3}$,则tanα等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案