精英家教网 > 高中数学 > 题目详情
12.已知幂函数f(x)的图象过点(2,4),则f(3)的值是9.

分析 根据幂函数的一般解析式y=xa,因为其过点(2,4),求出幂函数的解析式,从而求出f(3).

解答 解:∵幂函数的一般解析式y=xa
∵幂函数y=f(x)的图象过点(2,4),
∴4=2a,解得a=2,
∴y=x2
∴f(3)=32=9,
故答案为9.

点评 此题主要考查函数的值,以及幂函数的性质及其应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k=1,判断函数y=f(x)的单调性,并求函数的极值;
(Ⅱ)若f(x)无零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=tan($\frac{π}{2}$x+$\frac{π}{3}$)的定义域、周期性、奇偶性、单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(x+m)-x(m为常数)在x=0处取得极值.
(Ⅰ)求实数m的取值;
(Ⅱ)求当x∈[$-\frac{1}{2}$,+∞)时,函数g(x)=f(x)-x2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某种产品的以往各年的宣传费用支出x(万元)与销售量t(万件)之间有如下对应数据
   x   2   4   5   6   8
   t   4   3   6   7   8
(1)试求回归直线方程;
(2)设该产品的单件售价与单件生产成本的差为y(元),若y与销售量t(万件)的函数关系是$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$(0<t<30),试估计宣传费用支出x为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)
(参考数据与公式:$\sum_{i=1}^{5}{{x}_{i}}^{2}=145$,$\sum_{i=1}^{5}{x}_{i}{t}_{i}$=156,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-ax,x∈R,其中a>0.
(1)若函数f(x)在R上的最小值是-1,求实数a的值;
(2)若存在两个不同的点(m,n),(n,m)同时在曲线f(x)上,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两个不共线的向量,$\overrightarrow{a}$=-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-3$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,试用$\overrightarrow{b}$,$\overrightarrow{c}$为基底表示向量$\overrightarrow{a}$;
(2)已知向量$\overrightarrow{m}$=(3,2),$\overrightarrow{n}$=(-1,2),$\overrightarrow{p}$=(4,1),当k为何值时,($\overrightarrow{m}$+k$\overrightarrow{p}$)∥(2$\overrightarrow{n}$-$\overrightarrow{m}$)?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点P(1,0)到直线x-y-3=0的距离为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知不等式ax2+bx-1<0的解集为{x|-1<x<2}.
(1)计算a、b的值;
(2)求解不等式x2-ax+b>0的解集.

查看答案和解析>>

同步练习册答案