分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(Ⅱ)当k<0时,由f(1)f(ek)<0可知函数有零点,不符合题意;当k=0时,函数f(x)=lnx有唯一零点x=1有唯一零点,不符合题意;当k>0时,由单调性可知函数有最大值,由函数的最大值小于零列出不等式,解之即可.
解答 解:(Ⅰ)k=1时,f(x)=lnx-x,f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
故f(x)在(0,1)递增,在(1,+∞)递减,
故f(x)极大值=f(1)=0;
(Ⅱ)①若k<0时,则f′(x)>0,f(x)是区间(0,+∞)上的增函数,
∵f(1)=-k>0,f(ek)=k-kek=k(1-ek)<0,
∴f(1)•f(ek)<0,函数f(x)在区间(0,+∞)有唯一零点;
②若k=0,f(x)=lnx有唯一零点x=1;
③若k>0,令f′(x)=0,得x=$\frac{1}{k}$,
在区间(0,$\frac{1}{k}$)上,f′(x)>0,函数f(x)是增函数;
在区间($\frac{1}{k}$,+∞)上,f′(x)<0,函数f(x)是减函数;
故在区间(0,+∞)上,f(x)的极大值为f($\frac{1}{k}$)=ln$\frac{1}{k}$-1=-lnk-1,
由于f(x)无零点,须使f($\frac{1}{k}$)=-lnk-1<0,解得:k>$\frac{1}{e}$,
故所求实数k的取值范围是($\frac{1}{e}$,+∞).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,考查函数的零点问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x=1,则x2=1”的否命题是“x=1,则x2≠1” | |
| B. | 命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0” | |
| C. | “(x-1)(x+3)<0”是“-2<x<1”的充分不必要条件 | |
| D. | 若p∨q为假命题,则p,q中至少有一个是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8\sqrt{2}}{3}$π | B. | 3$\sqrt{2}$π | C. | $\frac{7\sqrt{3}}{3}$π | D. | 4$\sqrt{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com