精英家教网 > 高中数学 > 题目详情
12.设k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k=1,判断函数y=f(x)的单调性,并求函数的极值;
(Ⅱ)若f(x)无零点,求实数k的取值范围.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(Ⅱ)当k<0时,由f(1)f(ek)<0可知函数有零点,不符合题意;当k=0时,函数f(x)=lnx有唯一零点x=1有唯一零点,不符合题意;当k>0时,由单调性可知函数有最大值,由函数的最大值小于零列出不等式,解之即可.

解答 解:(Ⅰ)k=1时,f(x)=lnx-x,f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
故f(x)在(0,1)递增,在(1,+∞)递减,
故f(x)极大值=f(1)=0;
(Ⅱ)①若k<0时,则f′(x)>0,f(x)是区间(0,+∞)上的增函数,
∵f(1)=-k>0,f(ek)=k-kek=k(1-ek)<0,
∴f(1)•f(ek)<0,函数f(x)在区间(0,+∞)有唯一零点;
②若k=0,f(x)=lnx有唯一零点x=1;
③若k>0,令f′(x)=0,得x=$\frac{1}{k}$,
在区间(0,$\frac{1}{k}$)上,f′(x)>0,函数f(x)是增函数;
在区间($\frac{1}{k}$,+∞)上,f′(x)<0,函数f(x)是减函数;
故在区间(0,+∞)上,f(x)的极大值为f($\frac{1}{k}$)=ln$\frac{1}{k}$-1=-lnk-1,
由于f(x)无零点,须使f($\frac{1}{k}$)=-lnk-1<0,解得:k>$\frac{1}{e}$,
故所求实数k的取值范围是($\frac{1}{e}$,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,考查函数的零点问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设两个非零向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,若$\overrightarrow{a}$与$\overrightarrow{b}$的起点相同,且$\overrightarrow{a}$,t$\overrightarrow{b}$,$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow{b}$)的终点在同一条直线上,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若正数 x,y,z 满足 x+2y+3z=1,则$\frac{1}{x+z}+\frac{8(x+z)}{y+z}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.命题“若x=1,则x2=1”的否命题是“x=1,则x2≠1”
B.命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”
C.“(x-1)(x+3)<0”是“-2<x<1”的充分不必要条件
D.若p∨q为假命题,则p,q中至少有一个是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤8}\\{x≤4}\\{y≤3}\end{array}\right.$,则目标函数z=2x+3y的最大值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.棱长分别为1、$\sqrt{3}$、2的长方体的8个顶点都在球O的表面上,则球O的体积为(  )
A.$\frac{8\sqrt{2}}{3}$πB.3$\sqrt{2}$πC.$\frac{7\sqrt{3}}{3}$πD.4$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四边形ABCD是正方形,PD∥MA,PD≠MA,PM⊥平面CDM.
(1)求证:平面ABCD⊥平面AMPD;
(2)判断直线BC、PM的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=$\sqrt{2}sinx-cosx$在x=φ时取得最大值,则tanφ=(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知幂函数f(x)的图象过点(2,4),则f(3)的值是9.

查看答案和解析>>

同步练习册答案