分析 (1)由PM⊥平面CDM得PM⊥CD,ABCD是正方形得CD⊥AD,从而证得CD⊥平面AMPD,即平面ABCD⊥平面AMPD;
(2)运用线面平行的判定和性质,即可得到直线BC、PM的位置关系为异面.
解答
解:(1)证明:∵PM⊥平面CDM,且CD?平面CDM,
∴PM⊥CD,
又∵ABCD是正方形,∴CD⊥AD,
在梯形AMPD中,PM与AD相交,
∴CD⊥平面AMPD,
又∵CD?平面ABCD,
∴平面ABCD⊥平面AMPD;
(2)直线BC、PM的位置关系为异面.
由BC∥AD,BC?平面AMPD,AD?平面AMPD,
直线PM与直线AD相交,
BC与PM不相交,且BC∥平面AMPD,
则BC与PM不平行,则BC与PM异面.
点评 本题考查两平面垂直的判定,注意运用面面垂直的判定定理,关键是转化为线面垂直,考查两直线的位置关系,注意运用线面平行的判定和性质,考查推理能力和空间想象能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l⊥g,且l与圆相交 | B. | l⊥g,且l与圆相离 | C. | l∥g,且l与圆相交 | D. | l∥g,且l与圆相离 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{6}$ | B. | $\frac{π}{6}$ | C. | -$\frac{π}{12}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com