分析 先求出命题p和命题q为真时,实数a的取值范围,进而可得命题p∧q为假时,实数a的取值范围.
解答 解:p:函数f(x)=lg(ax2$-x+\frac{1}{4}$a)的定义域为R;
故ax2$-x+\frac{1}{4}$a>0恒成立,
若a=0,则-x>0,即x<0,不满足条件.
若a≠0,要使不等式恒成立,则$\left\{\begin{array}{l}{a>0}\\{△<0}\end{array}\right.$,解得:a>1,
故p:a>1;
q:f(x)=$\frac{x+a}{x-1}$=1+$\frac{a+1}{x-1}$,
∵f(x)在(1,+∞)上单调递减
∴a+1>0
即:∴a>-1,
当p∧q为真命题时$\left\{\begin{array}{l}{a>2}\\{a>-1}\end{array}\right.$,
∴a>2
∴当p∧q为假命题时a≤2.
点评 本题以命题的真假判断与应用为载体,考查了复合命题,恒成立问题,反比例型函数的单调性,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -$\frac{1}{2}$ | C. | 1 | D. | -4或1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x=1,则x2=1”的否命题是“x=1,则x2≠1” | |
| B. | 命题“?x∈R,x2≥0”的否定是“?x0∈R,x02<0” | |
| C. | “(x-1)(x+3)<0”是“-2<x<1”的充分不必要条件 | |
| D. | 若p∨q为假命题,则p,q中至少有一个是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8\sqrt{2}}{3}$π | B. | 3$\sqrt{2}$π | C. | $\frac{7\sqrt{3}}{3}$π | D. | 4$\sqrt{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1$-\sqrt{2}$ | B. | 3 | C. | $\sqrt{2}-1$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com